Minimal vertex separators and new characterizations for dually chordal graphs

Pablo De Caria, Marisa Gutierrez

CONICET, Departamento de Matemática, Universidad Nacional de La Plata

Lagos 09, Gramado, November 2009
Quick definitions

A *uv*-separator of G is a set $S \subseteq V(G)$ such that $G - S$ is disconnected, with u and v in two different connected components. It is **minimal** if no smaller subset has the same property. $S(G)$ will denote the family of minimal vertex separators of G.

A **complete** is a set of pairwise adjacent vertices. A **clique** is a maximal complete. $C(G)$ denotes the family of cliques of G.

A family of sets is **Helly** if the intersection of all the elements of any subfamily of pairwise intersecting sets is not empty.

If $C(G)$ is a Helly family, we say that G is a **Helly** graph.
Quick definitions

A **uv-separator** of G is a set $S \subseteq V(G)$ such that $G - S$ is disconnected, with u and v in two different connected components. It is **minimal** if no smaller subset has the same property. $S(G)$ will denote the family of minimal vertex separators of G.

A **complete** is a set of pairwise adjacent vertices. A **clique** is a maximal complete. $C(G)$ denotes the family of cliques of G.

A family of sets is **Helly** if the intersection of all the elements of any subfamily of pairwise intersecting sets is not empty.

If $C(G)$ is a Helly family, we say that G is a **Helly** graph.
Quick definitions

A **uv-separator** of G is a set $S \subseteq V(G)$ such that $G - S$ is disconnected, with u and v in two different connected components. It is **minimal** if no smaller subset has the same property. $S(G)$ will denote the family of minimal vertex separators of G.

A **complete** is a set of pairwise adjacent vertices. A **clique** is a maximal complete. $C(G)$ denotes the family of cliques of G.

A family of sets is **Helly** if the intersection of all the elements of any subfamily of pairwise intersecting sets is not empty.

If $C(G)$ is a Helly family, we say that G is a **Helly** graph.
Quick definitions

A *uv*-separator of G is a set $S \subseteq V(G)$ such that $G - S$ is disconnected, with u and v in two different connected components. It is **minimal** if no smaller subset has the same property. $S(G)$ will denote the family of minimal vertex separators of G.

A **complete** is a set of pairwise adjacent vertices. A **clique** is a maximal complete. $C(G)$ denotes the family of cliques of G.

A family of sets is **Helly** if the intersection of all the elements of any subfamily of pairwise intersecting sets is not empty.

If $C(G)$ is a Helly family, we say that G is a **Helly** graph.
A **chord** of a cycle is an edge joining nonconsecutive vertices of the cycle.

Chordal graphs are those without chordless cycles of length at least four.

The **intersection graph** of a family F of sets, $L(F)$, has these sets as vertices and two of them are adjacent if they are not disjoint.

We refer to $L(C(G))$ as the **clique graph** of G or just $K(G)$.
A **chord** of a cycle is an edge joining nonconsecutive vertices of the cycle.

Chordal graphs are those without chordless cycles of length at least four.

The **intersection graph** of a family F of sets, $L(F)$, has these sets as vertices and two of them are adjacent if they are not disjoint.

We refer to $L(C(G))$ as the **clique graph** of G or just $K(G)$.

Pablo De Caria, Marisa Gutierrez
CONICET, Departamento de Matemática, Universidad Nacional de La Plata

Minimal vertex separators and new characterizations for dually chordal graphs
A **chord** of a cycle is an edge joining nonconsecutive vertices of the cycle.

Chordal graphs are those without chordless cycles of length at least four.

The **intersection graph** of a family F of sets, $L(F)$, has these sets as vertices and two of them are adjacent if they are not disjoint.

We refer to $L(C(G))$ as the **clique graph** of G or just $K(G)$.
A **chord** of a cycle is an edge joining nonconsecutive vertices of the cycle.

Chordal graphs are those without chordless cycles of length at least four.

The **intersection graph** of a family F of sets, $L(F)$, has these sets as vertices and two of them are adjacent if they are not disjoint.

We refer to $L(C(G))$ as the **clique graph** of G or just $K(G)$.
A **chord** of a cycle is an edge joining nonconsecutive vertices of the cycle.

Chordal graphs are those without chordless cycles of length at least four.

The **intersection graph** of a family F of sets, $L(F)$, has these sets as vertices and two of them are adjacent if they are not disjoint.

We refer to $L(C(G))$ as the **clique graph** of G or just $K(G)$.
Dually chordal graphs

Definitions

Given a graph G, w is a maximum neighbor of v if $N^2[v] \subseteq N[w]$.

$v_1v_2...v_n$ is a maximum neighborhood ordering of G if v_i has a maximum neighbor in $G[\{v_i, ..., v_n\}]$.

We call dually chordal to any graph with a maximum neighborhood ordering.
Dually chordal graphs

Definitions

Given a graph G, w is a maximum neighbor of v if $N^2[v] \subseteq N[w]$.

$v_1v_2...v_n$ is a maximum neighborhood ordering of G if v_i has a maximum neighbor in $G[\{v_i, ..., v_n\}]$.

We call dually chordal to any graph with a maximum neighborhood ordering.
Dually chordal graphs

Definitions

Given a graph G, w is a maximum neighbor of v if $N^2[v] \subseteq N[w]$.

$v_1v_2...v_n$ is a maximum neighborhood ordering of G if v_i has a maximum neighbor in $G[\{v_i, ..., v_n\}]$.

We call dually chordal to any graph with a maximum neighborhood ordering.
Example

1723645 is a maximum neighborhood ordering.
1723645 is a maximum neighborhood ordering.
Other characterizations

- There exists a spanning tree T such that every clique induces a subtree.
- There exists a spanning tree T such that, $\forall v \in V(G)$, $N[v]$ induces a subtree.

Any tree T with these characteristics is given the name of compatible tree.
Other characterizations

- There exists a spanning tree T such that every clique induces a subtree.
- There exists a spanning tree T such that, $\forall v \in V(G)$, $N[v]$ induces a subtree.

Any tree T with these characteristics is given the name of compatible tree.
Other characterizations

▶ There exists a spanning tree T such that every clique induces a subtree.

▶ There exists a spanning tree T such that, $\forall v \in V(G)$, $N[v]$ induces a subtree.

Any tree T with these characteristics is given the name of compatible tree.
Other characterizations

- There exists a spanning tree T such that every clique induces a subtree.
- There exists a spanning tree T such that, $\forall v \in V(G)$, $N[v]$ induces a subtree.

Any tree T with these characteristics is given the name of compatible tree.
Other characterizations

- G is Helly and $K(G)$ is chordal.
- G is the clique graph of a chordal graph.
Other characterizations

- G is Helly and $K(G)$ is chordal.
- G is the clique graph of a chordal graph.
Other characterizations

- G is Helly and $K(G)$ is chordal.
- G is the clique graph of a chordal graph.
Separators and neighborhoods

Theorem
Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof
Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Separators and neighborhoods

Theorem

Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof

Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Theorem
Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof
Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Separators and neighborhoods

Theorem
Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof
Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Separators and neighborhoods

Theorem
Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof
Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Theorem
Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof
Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Separators and neighborhoods

Theorem
Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof
Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Separators and neighborhoods

Theorem
Let u and v be two nonadjacent vertices of a dually chordal graph G. Then there is a vertex w, $w \neq u$ and $w \neq v$, such that $N[w] - \{u, v\}$ is a uv-separator.

Sketch of proof
Take T compatible with G and let w be an inner vertex of the path in T from u to v.
Theorem

Let G be a dually chordal graph. Then every minimal vertex separator of G is contained in the neighborhood of a vertex if and only if every chordless cycle of G is in the neighborhood of some vertex.

What happened with the graph of the example?
Theorem

Let G be a dually chordal graph. Then every minimal vertex separator of G is contained in the neighborhood of a vertex if and only if every chordless cycle of G is in the neighborhood of some vertex.

What happened with the graph of the example?
New characterizations

It is possible to prove that...

- If a tree is compatible with G then each minimal vertex separator induces a subtree.
- If each minimal vertex separator induces a subtree in a spanning tree T for G then T is compatible with G.

Theorem

G is dually chordal $\iff \exists T$ spanning tree such that every minimal vertex separator induces a subtree.
New characterizations

It is possible to prove that...

- If a tree is compatible with G then each minimal vertex separator induces a subtree.
- If each minimal vertex separator induces a subtree in a spanning tree T for G then T is compatible with G.

Theorem

G is dually chordal $\iff \exists$ T spanning tree such that every minimal vertex separator induces a subtree.
First conclusion: Minimal vertex separators induce connected subgraphs.

Property: A family of subtrees of a tree is Helly.

Second conclusion: $S(G)$ is Helly.

Property: The intersection graph of a family of subtrees of a tree is chordal.

Third conclusion: $L(S(G))$ is chordal.

Theorem

G is dually chordal

Each minimal separator induces a connected subgraph, $S(G)$ is Helly and $L(S(G))$ is chordal.
First conclusion: Minimal vertex separators induce connected subgraphs.

Property: A family of subtrees of a tree is Helly.

Second conclusion: $S(G)$ is Helly.

Property: The intersection graph of a family of subtrees of a tree is chordal.

Third conclusion: $L(S(G))$ is chordal.

Theorem

G is dually chordal

\uparrow

Each minimal separator induces a connected subgraph, $S(G)$ is Helly and $L(S(G))$ is chordal.
First conclusion: Minimal vertex separators induce connected subgraphs.

Property: A family of subtrees of a tree is Helly.

Second conclusion: $S(G)$ is Helly.

Property: The intersection graph of a family of subtrees of a tree is chordal.

Third conclusion: $L(S(G))$ is chordal.

Theorem

G is dually chordal if and only if each minimal separator induces a connected subgraph, $S(G)$ is Helly, and $L(S(G))$ is chordal.
First conclusion: Minimal vertex separators induce connected subgraphs.

Property: A family of subtrees of a tree is Helly.

Second conclusion: \(S(G) \) is Helly.

Property: The intersection graph of a family of subtrees of a tree is chordal.

Third conclusion: \(L(S(G)) \) is chordal.

Theorem

\[G \text{ is dually chordal} \]

\[\Updownarrow \]

Each minimal separator induces a connected subgraph, \(S(G) \) is Helly and \(L(S(G)) \) is chordal.
None of the three can be deduced from the others

\[S(G) \text{ fails to be Helly} \]
\[L(S(G)) \text{ fails to be chordal} \]
\[\text{Some minimal separators are disconnected} \]
Idea of the proof

Property: If a family of sets is Helly and its intersection graph is chordal, then it can be represented as a family of subtrees of a tree.

Take T with $V(T) = V(G)$ such that each minimal vertex separator of G induces a subtree in T and $p(T) := \sum_{uv \in E(T)} d(u, v)$ is minimum.

T is a spanning tree and each minimal vertex separator of G induces a subtree of G.

Conclusion: G is dually chordal.
Idea of the proof

Property: If a family of sets is Helly and its intersection graph is chordal, then it can be represented as a family of subtrees of a tree.

Take T with $V(T) = V(G)$ such that each minimal vertex separator of G induces a subtree in T and $p(T) := \sum_{uv \in E(T)} d(u, v)$ is minimum.

T is a spanning tree and each minimal vertex separator of G induces a subtree of G.

Conclusion: G is dually chordal.
Idea of the proof

Property: If a family of sets is Helly and its intersection graph is chordal, then it can be represented as a family of subtrees of a tree.

Take T with $V(T) = V(G)$ such that each minimal vertex separator of G induces a subtree in T and $p(T) := \sum_{uv \in E(T)} d(u, v)$ is minimum.

T is a spanning tree and each minimal vertex separator of G induces a subtree of G.

Conclusion: G is dually chordal.
Idea of the proof

Property: If a family of sets is Helly and its intersection graph is chordal, then it can be represented as a family of subtrees of a tree.

Take T with $V(T) = V(G)$ such that each minimal vertex separator of G induces a subtree in T and $p(T) := \sum_{uv \in E(T)} d(u, v)$ is minimum.

T is a spanning tree and each minimal vertex separator of G induces a subtree of G.

Conclusion: G is dually chordal.
Idea of the proof

Property: If a family of sets is Helly and its intersection graph is chordal, then it can be represented as a family of subtrees of a tree.

Take T with $V(T) = V(G)$ such that each minimal vertex separator of G induces a subtree in T and $p(T) := \sum_{uv \in E(T)} d(u, v)$ is minimum.

T is a spanning tree and each minimal vertex separator of G induces a subtree of G.

Conclusion: G is dually chordal.
Thank you!!