An introduction to subclasses of basic chordal graphs

Pablo De Caria, Marisa Gutierrez

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

LAGOS 2013, Playa del Carmen, April 2013
Chordal graphs

Every cycle of length at least four has a chord.
Chordal graphs

Every cycle of length at least four has a chord.

Clique tree

For all $v \in V(G)$, the family C_v of cliques containing v induces a subtree of T.
Chordal graphs

Every cycle of length at least four has a chord.

Clique tree

For all $v \in V(G)$, the family C_v of cliques containing v induces a subtree of T.
Chordal graphs

Every cycle of length at least four has a chord.

Clique tree

For all $v \in V(G)$, the family C_v of cliques containing v induces a subtree of T.

Pablo De Caria, Marisa Gutierrez
CONICET/ Departamento de Matemática, Universidad Nacional de La Plata
An introduction to subclasses of basic chordal graphs
Chordal graphs

Every cycle of length at least four has a chord.

Clique tree

For all $v \in V(G)$, the family C_v of cliques containing v induces a subtree of T.
Dually chordal graphs

Clique graphs of chordal graphs.
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree \(T \) such that every clique or closed neighborhood induces a subtree of \(T \).
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.
Dually chordal graphs
Clique graphs of chordal graphs.

Compatible tree
A spanning tree T such that every clique or closed neighborhood induces a subtree of T.

Pablo De Caria, Marisa Gutierrez
CONICET/ Departamento de Matemática, Universidad Nacional de La Plata
An introduction to subclasses of basic chordal graphs
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.

![Graph Image]
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.

![Graphs](image)
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.

Pablo De Caria, Marisa Gutierrez
CONICET/ Departamento de Matemática, Universidad Nacional de La Plata
An introduction to subclasses of basic chordal graphs
Dually chordal graphs

Clique graphs of chordal graphs.

Compatible tree

A spanning tree T such that every clique or closed neighborhood induces a subtree of T.

Pablo De Caria, Marisa Gutierrez

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

An introduction to subclasses of basic chordal graphs
Basic chordal graphs

G is **basic chordal** if the compatible trees of $K(G)$ are exactly the clique trees of G.
Basic chordal graphs

G is **basic chordal** if the compatible trees of $K(G)$ are exactly the clique trees of G.

Let S be a minimal separator of G.

C_S: Cliques containing S.

B_S: Cliques intersecting every clique C such that $C \cap S \neq \emptyset$
Basic chordal graphs

G is **basic chordal** if the compatible trees of $K(G)$ are exactly the clique trees of G.

Let S be a minimal separator of G.

\mathcal{C}_S: Cliques containing S.

\mathcal{B}_S: Cliques intersecting every clique C such that $C \cap S \neq \emptyset$

$S = \{2, 5\}$
Basic chordal graphs

G is **basic chordal** if the compatible trees of $K(G)$ are exactly the clique trees of G.

Let S be a minimal separator of G.

C_S: Cliques containing S.

B_S: Cliques intersecting every clique C such that $C \cap S \neq \emptyset$

$S = \{2, 5\}$

$C_S = \{C_2, C_3\}$

$B_S = \{C_2, C_3, C_4\}$
Theorem

A graph G is basic chordal iff for all $S \in S(G)$, $B_S = C_S$.
Theorem

A graph G is basic chordal iff for all $S \in S(G)$, $B_S = C_S$.

<table>
<thead>
<tr>
<th>S</th>
<th>B_S</th>
<th>C_S</th>
<th>$B_S = C_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${2, 3}$</td>
<td>${C_1, C_3}$</td>
<td>${C_1, C_3}$</td>
<td>✓</td>
</tr>
<tr>
<td>${2, 5}$</td>
<td>${C_2, C_3}$</td>
<td>${C_2, C_3}$</td>
<td>✓</td>
</tr>
<tr>
<td>${3, 5}$</td>
<td>${C_3, C_4}$</td>
<td>${C_3, C_4}$</td>
<td>✓</td>
</tr>
<tr>
<td>${2}$</td>
<td>${C_1, C_2, C_3, C_5}$</td>
<td>${C_1, C_2, C_3, C_5}$</td>
<td>✓</td>
</tr>
<tr>
<td>${3}$</td>
<td>${C_1, C_3, C_4, C_6}$</td>
<td>${C_1, C_3, C_4, C_6}$</td>
<td>✓</td>
</tr>
<tr>
<td>${5}$</td>
<td>${C_2, C_3, C_4, C_7}$</td>
<td>${C_2, C_3, C_4, C_7}$</td>
<td>✓</td>
</tr>
</tbody>
</table>
Theorem
A graph G is basic chordal iff for all $S \in S(G)$, $B_S = C_S$.

Proposition
Let G be a chordal graph and V' be the set of vertices of G that are not simplicial. Let G' be the graph constructed from G by adding, for each $v \in V'$, a vertex v^* and the edge vv^*. Then, G' is basic chordal.
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$
A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$
A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$

$v_2 \in S \setminus C_3$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

- S such that $B_S \neq C_S$
- C_1, C_2 separating pair such that $C_1 \cap C_2 = S$
- $C_3 \in B_S \setminus C_S$
- $v_1 \in C_3 \cap S$
- $v_2 \in S \setminus C_3$
- $v_3 \in C_1 \setminus C_2$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$

$v_2 \in S \setminus C_3$

$v_3 \in C_1 \setminus C_2$

$v_4 \in C_2 \setminus C_1$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$

$v_2 \in S \setminus C_3$

$v_3 \in C_1 \setminus C_2$

$v_4 \in C_2 \setminus C_1$

$v_5 \in C_3 \setminus N[v_2]$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$

$v_2 \in S \setminus C_3$

$v_3 \in C_1 \setminus C_2$

$v_4 \in C_2 \setminus C_1$

$v_5 \in C_3 \setminus N[v_2]$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$

$v_2 \in S \setminus C_3$

$v_3 \in C_1 \setminus C_2$

$v_4 \in C_2 \setminus C_1$

$v_5 \in C_3 \setminus N[v_2]$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$

$v_2 \in S \setminus C_3$

$v_3 \in C_1 \setminus C_2$

$v_4 \in C_2 \setminus C_1$

$v_5 \in C_3 \setminus N[v_2]$
Hereditary basic chordal graphs

A graph G is **hereditary basic chordal (HBC)** if G and all its induced subgraphs are basic chordal.

S such that $B_S \neq C_S$

C_1, C_2 separating pair such that $C_1 \cap C_2 = S$

$C_3 \in B_S \setminus C_S$

$v_1 \in C_3 \cap S$

$v_2 \in S \setminus C_3$

$v_3 \in C_1 \setminus C_2$

$v_4 \in C_2 \setminus C_1$

$v_5 \in C_3 \setminus N[v_2]$
Hereditary basic chordal graphs

A characterization of a graph G being a HBC graph:

G is a HBC graph if and only if G is a \{dart, gem\}-free chordal graph.

Pablo De Caria, Marisa Gutierrez
CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

An introduction to subclasses of basic chordal graphs
Hereditary basic chordal graphs

1º Characterization

G is a HBC graph $\iff G$ is a \{dart, gem\}-free chordal graph
Other characterizations

The following are equivalent:

- G is a HBC graph
- Every edge of $K(G)$ is in some clique tree of G and no minimal vertex separator of G contains another
- For every triple C_1, C_2, C_3 of pairwise intersecting cliques of G, $C_1 \cap C_2 = C_1 \cap C_3 = C_2 \cap C_3$
- A clique C intersects a minimal vertex separator S if and only if $S \subseteq C$
- The minimal vertex separators of G are pairwise disjoint
The structure of HBC graphs

Proposition: The vertices of a minimal vertex separator S of a HBC graph are twins (have the same closed neighborhood).

Reason: Any clique containing a vertex of S contains all the vertices of S.

Let G be a HBC graph. The maximal sets of twin vertices of G are minimal vertex separators or consist of simplicial vertices.
The structure of HBC graphs

Proposition: The vertices of a minimal vertex separator S of a HBC graph are twins (have the same closed neighborhood).

Reason: Any clique containing a vertex of S contains all the vertices of S.

Let G be a HBC graph. The maximal sets of twin vertices of G are minimal vertex separators or consist of simplicial vertices.

Let G' be the graph whose vertices are the maximal sets of twin vertices, where A and B are adjacent if and only if $G[A \cup B]$ is complete.
The structure of HBC graphs

Proposition: The vertices of a minimal vertex separator S of a HBC graph are twins (have the same closed neighborhood).

Reason: Any clique containing a vertex of S contains all the vertices of S.

Let G be a HBC graph. The maximal sets of twin vertices of G are minimal vertex separators or consist of simplicial vertices.

Let G' be the graph whose vertices are the maximal sets of twin vertices, where A and B are adjacent if and only if $G[A \cup B]$ is complete.

G' is a block graph.

HBC graphs arise from block graphs by replacing its vertices by sets of pairwise adjacent vertices.
Equivalent classes

(4,6)-leaf powers [Brandstädt and Wagner, 2008]

A graph \(G \) is a \((4,6)\)-leaf power if there exists a tree \(T \) whose leaves are the vertices of \(G \) and such that

\[
d_T(v, w) \leq 4 \text{ for all } vw \in E(G).
\]

\[
d_T(v, w) \geq 6 \text{ for all } vw \not\in E(G).
\]
Equivalent classes

(4,6)-leaf powers [Brandstädt and Wagner, 2008]

A graph G is a (4,6)-leaf power if there exists a tree T whose leaves are the vertices of G and such that

\[d_T(v, w) \leq 4 \text{ for all } vw \in E(G). \]

\[d_T(v, w) \geq 6 \text{ for all } vw \notin E(G). \]
2-simplicial powers of block graphs[Brandstädt and Le, 2008]

A graph G is the \textbf{k-simplicial power} of a graph H if $V(G)$ equals the set of simplicial vertices of H, and for all distinct vertices x and y of $V(G)$, $xy \in E(G)$ if and only if the distance in H between x and y is at most k.
2-simplicial powers of block graphs [Brandstädt and Le, 2008]

A graph G is the k-simplicial power of a graph H if $V(G)$ equals the set of simplicial vertices of H, and for all distinct vertices x and y of $V(G)$, $xy \in E(G)$ if and only if the distance in H between x and y is at most k.

HBC graphs are the 2-simplicial powers of block graphs.
2-simplicial powers of block graphs [Brandstädt and Le, 2008]

A graph \(G \) is the \(k \)-simplicial power of a graph \(H \) if \(V(G) \) equals the set of simplicial vertices of \(H \), and for all distinct vertices \(x \) and \(y \) of \(V(G) \), \(xy \in E(G) \) if and only if the distance in \(H \) between \(x \) and \(y \) is at most \(k \).

HBC graphs are the 2-simplicial powers of block graphs.

Contour vertices and convexity [José Cáceres et al, 2005]

Let \(S \) be a convex set of \(G \) and \(u \in S \). Let \(\text{ecc}_S(u) = \max\{d(u, v) : v \in S\} \).

\(u \) is a contour vertex of \(S \) if \(\text{ecc}_S(u) \geq \text{ecc}_S(v) \) for every neighbor \(v \) of \(u \) in \(S \).
2-simplicial powers of block graphs [Brandstädt and Le, 2008]

A graph G is the **k-simplicial power** of a graph H if $V(G)$ equals the set of simplicial vertices of H, and for all distinct vertices x and y of $V(G)$, $xy \in E(G)$ if and only if the distance in H between x and y is at most k.

HBC graphs are the 2-simplicial powers of block graphs.

Contour vertices and convexity [José Cáceres et al, 2005]

Let S be a convex set of G and $u \in S$. Let $\text{ecc}_S(u) = \max\{d(u, v) : v \in S\}$.

u is a **contour vertex** of S if $\text{ecc}_S(u) \geq \text{ecc}_S(v)$ for every neighbor v of u in S.

G is a HBC graph if and only if the set of contour vertices of S equals the set of simplicial vertices of $G[S]$, for every convex set S.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.

A graph is UV/DV/RDV if it has a UV/DV/RDV-clique tree.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.

A graph is $UV/DV/RDV$ if it has a $UV/DV/RDV$-clique tree.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.

A graph is $UV/DV/RDV$ if it has a $UV/DV/RDV$-clique tree.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.

A graph is UV/DV/RDV if it has a UV/DV/RDV-clique tree.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.

A graph is $UV/DV/RDV$ if it has a $UV/DV/RDV$-clique tree.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.

A graph is $UV/DV/RDV$ if it has a $UV/DV/RDV$-clique tree.
UV, DV and RDV graphs

A clique tree T of G is a....

UV clique tree: when C_v induces a path in T for every $v \in V(G)$.

DV clique tree: when the edges of T are directed so that C_v induces a directed path in T for every $v \in V(G)$.

RDV clique tree: when it is a DV clique tree and it is rooted.

A graph is $UV/DV/RDV$ if it has a $UV/DV/RDV$-clique tree.
Do they have dual classes?

The clique graphs of all UV graphs are also the dually chordal graphs.
Do they have dual classes?

The clique graphs of all UV graphs are also the dually chordal graphs.

Dually DV graphs: the clique graphs of all DV graphs.

DV-compatible tree: a compatible tree T whose edges have been directed so that each clique of the graph induces a directed path.
Do they have dual classes?

The clique graphs of all UV graphs are also the dually chordal graphs.

Dually DV graphs: the clique graphs of all DV graphs.

DV-compatible tree: a compatible tree T whose edges have been directed so that each clique of the graph induces a directed path.

Dually RDV graphs: the clique graphs of all RDV graphs.

RDV-compatible tree: a DV-compatible tree that is rooted at a vertex.
Do they have dual classes?

The clique graphs of all UV graphs are also the dually chordal graphs.

Dually DV graphs: the clique graphs of all DV graphs.

DV-compatible tree: a compatible tree T whose edges have been directed so that each clique of the graph induces a directed path.

Dually RDV graphs: the clique graphs of all RDV graphs.

RDV-compatible tree: a DV-compatible tree that is rooted at a vertex.

Another question
What is the relationship between the $DV(RDV)$-clique trees of a $DV(RDV)$ graph G and the $DV(RDV)$-compatible trees of $K(G)$?
Property

Let G be a $DV(RDV)$ graph. Then, every $DV(RDV)$-clique tree of G is a $DV(RDV)$-compatible tree of $K(G)$.
Property

Let G be a $DV(RDV)$ graph. Then, every $DV(RDV)$-clique tree of G is a $DV(RDV)$-compatible tree of $K(G)$.

Sketch of proof

$DV(RDV)$ graphs are clique-Helly. Hence, every clique of $K(G)$ is of the form C_v, for some $v \in V(G)$. Therefore, the cliques of $K(G)$ induce directed paths of every $DV(RDV)$-clique tree of G.

Pablo De Caria, Marisa Gutierrez

CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

An introduction to subclasses of basic chordal graphs
Property

Let G be a $DV(RDV)$ graph. Then, every $DV(RDV)$-clique tree of G is a $DV(RDV)$-compatible tree of $K(G)$.

Sketch of proof

$DV(RDV)$ graphs are clique-Helly. Hence, every clique of $K(G)$ is of the form C_v, for some $v \in V(G)$. Therefore, the cliques of $K(G)$ induce directed paths of every $DV(RDV)$-clique tree of G.
The converse is not true

Pablo De Caria, Marisa Gutierrez
CONICET/ Departamento de Matemática, Universidad Nacional de La Plata

An introduction to subclasses of basic chordal graphs
Property

Let G be a basic chordal graph and T be a $DV(RDV)$-compatible tree of $K(G)$. Then, T is a $DV(RDV)$-clique tree of G.

Sketch of proof:

Let $v \in V(G)$. The cliques in C_v are pairwise adjacent in $K(G)$. Let D be a clique of $K(G)$ such that $C_v \subseteq D$. $T[C_v]$ is a subtree of T because G is basic chordal. $T[D]$ is a directed path because T is $DV(RDV)$-compatible. A subtree of a directed path is a directed path.

Conclusion

In basic chordal graphs, the correspondence is not only between its clique trees and the compatible trees of its clique graph but it is stronger in a way that the DV and RDV class trees of both graphs are identical, when they exist.
Property

Let G be a basic chordal graph and T be a $DV(RDV)$-compatible tree of $K(G)$. Then, T is a $DV(RDV)$-clique tree of G.

Sketch of proof: Let $v \in V(G)$. The cliques in C_v are pairwise adjacent in $K(G)$. Let D be a clique of $K(G)$ such that $C_v \subseteq D$.

$T[C_v]$ is a subtree of T because G is basic chordal. $T[D]$ is a directed path because T is $DV(RDV)$-compatible.

A subtree of a directed path is a directed path.
Property

Let G be a basic chordal graph and T be a $DV(RDV)$-compatible tree of $K(G)$. Then, T is a $DV(RDV)$-clique tree of G.

Sketch of proof: Let $v \in V(G)$. The cliques in C_v are pairwise adjacent in $K(G)$. Let D be a clique of $K(G)$ such that $C_v \subseteq D$.

$T[C_v]$ is a subtree of T because G is basic chordal. $T[D]$ is a directed path because T is $DV(RDV)$-compatible.

A subtree of a directed path is a directed path.

Conclusion

In basic chordal graphs, the correspondence is not only between its clique trees and the compatible trees of its clique graph but it is stronger in a way that the DV and RDV class trees of both graphs are identical, when they exist.
Let us define

Basic DV graphs

DV and basic chordal graphs whose DV-clique trees are exactly the DV-compatible trees of $K(G)$.

Basic RDV graphs

RDV and basic chordal graphs whose RDV-clique trees are exactly the RDV-compatible trees of $K(G)$.
Let us define

Basic DV graphs

DV and basic chordal graphs whose DV-clique trees are exactly the DV-compatible trees of $K(G)$.

Basic RDV graphs

RDV and basic chordal graphs whose RDV-clique trees are exactly the RDV-compatible trees of $K(G)$.

Consequences

- $BASIC \ DV = BASIC \ CHORDAL \cap \ DV$
- $BASIC \ RDV = BASIC \ CHORDAL \cap \ RDV$
Thank you!
An introduction to subclasses of basic chordal graphs