On the complexity of k-tuple total and total $\{k\}$-dominations

V. Leoni1,2

joint work with G. Argiroffo1 and P. Torres1,2

1 FCEIA, Universidad Nacional de Rosario
2 CONICET- Argentina

VII LAWCG, La Plata, Argentina
8-11 Noviembre 2016
G without isolated vertices, simple and finite graph

$V(G)$: vertex set of G

$N(v)$: (open) neighborhood of $v \in V(G)$

DOMINATION

$D \subseteq V(G)$ is dominating set if

$\forall v \in V(G) \setminus D$, $|N(v) \cap D| \geq 1$

TOTAL DOMINATION

$D \subseteq V(G)$ is total dominating set if

$\forall v \in V(G)$, $|N(v) \cap D| \geq 1$
Main definitions: two variations of total domination

\[f(D) := \sum_{v \in D} f(v) \text{ weight of } D \subseteq V(G) \]

- \(f : V(G) \rightarrow \{0, 1\} \) a total dominating function of \(G \) if
 \[f(N(v)) \geq 1, \forall v \in V(G). \]

\(\gamma_t(G) \): minimum value of \(f(V(G)) \) over all such \(f \)’s

Main definitions: two variations of total domination

\[f(D) := \sum_{v \in D} f(v) \text{ weight of } D \subseteq V(G) \]

- \(f : V(G) \mapsto \{0, 1\} \) a \(k \)-tuple total dominating function of \(G \) if
 \[f(N(v)) \geq k, \ \forall v \in V(G) \quad (k \leq \delta(G)). \]

\(\gamma_{\times k,t}(G) \): minimum value of \(f(V(G)) \) over all such \(f \)’s

Main definitions: two variations of total domination

\[f(D) := \sum_{v \in D} f(v) \text{ weight of } D \subseteq V(G) \]

- \(f : V(G) \rightarrow \{0, 1\} \) a \(k \)-tuple total dominating function of \(G \) if
 \[f(N(v)) \geq k, \ \forall v \in V(G) \quad (k \leq \delta(G)). \]
 \(\gamma \times k,t(G) \): minimum value of \(f(V(G)) \) over all such \(f \)’s

- \(f : V(G) \rightarrow \{0, 1, \ldots, k\} \) a total \(\{k\} \)-dominating function of \(G \) if
 \[f(N(v)) \geq k, \ \forall v \in V(G). \]
 \(\gamma \{k\},t(G) \): minimum value of \(f(V(G)) \) over all such \(f \)’s

 N. Li and X. Hou, On the total \(\{k\} \)-domination number of Cartesian products of graphs, J. Comb. Optim. (2009)
Main definitions: two variations of total domination

\[f(D) := \sum_{v \in D} f(v) \text{ weight of } D \subseteq V(G) \]

- \(f : V(G) \mapsto \{0, 1\} \) a \(k \)-tuple total dominating function of \(G \) if
 \[f(N(v)) \geq k, \quad \forall v \in V(G) \quad (k \leq \delta(G)). \]

\(\gamma \times k, t(G) \): minimum value of \(f(V(G)) \) over all such \(f \)’s

- \(f : V(G) \mapsto \{0, 1, \ldots, k\} \) a total \(\{k\} \)-dominating function of \(G \) if
 \[f(N(v)) \geq k, \quad \forall v \in V(G). \]

\(\gamma\{k\}, t(G) \): minimum value of \(f(V(G)) \) over all such \(f \)’s

N. Li and X. Hou, On the total \(\{k\} \)-domination number of Cartesian products of graphs, J. Comb. Optim. (2009)

\[\gamma\{k\}, t \leq \gamma \times k, t(G) \text{ for } k \leq \delta(G), \]
Main definitions: two variations of total domination

\[f(D) := \sum_{v \in D} f(v) \text{ weight of } D \subseteq V(G) \]

- \(f : V(G) \rightarrow \{0, 1\} \) a \textit{k-tuple total dominating function} of \(G \) if
 \[f(N(v)) \geq k, \forall v \in V(G) \quad (k \leq \delta(G)). \]

\(\gamma_{\times k,t}(G) \): minimum value of \(f(V(G)) \) over all such \(f \)'s

- \(f : V(G) \rightarrow \{0, 1, \cdots, k\} \) a \textit{total \{k\}-dominating function} of \(G \) if
 \[f(N(v)) \geq k, \forall v \in V(G). \]

\(\gamma_{\{k\},t}(G) \): minimum value of \(f(V(G)) \) over all such \(f \)'s

\[\gamma_{\{k\},t} \leq \gamma_{\times k,t}(G) \text{ for } k \leq \delta(G), \quad \gamma_{\times 1,t}(G) \leq \gamma_{\{k\},t} \leq k \gamma_{\times 1,t}(G) \]
The problems

k-TUPLE TOTAL DOMINATION (k-DOM-T)

Instance: \(G = (V(G), E(G)), j \in \mathbb{N} \)

Question: Does \(G \) have a \(k \)-tuple total dominating function with weight at most \(j \)?

TOTAL \(\{k\}\)-DOMINATION (\(\{k\}\)-DOM-T)

Instance: \(G = (V(G), E(G)), j \in \mathbb{N} \)

Question: Does \(G \) have a total \(\{k\}\)-dominating function with weight at most \(j \)?

1-DOM-T=\{1\}-DOM-T= DOM-T
Known complexity results

“NP-c”, “P” and “?” mean NP-complete, polynomial and open problem, respectively.

<table>
<thead>
<tr>
<th>Class</th>
<th>k-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
<th>${k}$-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete multipartite</td>
<td>P [1]</td>
<td>?</td>
</tr>
<tr>
<td>Chordal bipartite</td>
<td>P [2]</td>
<td>?</td>
</tr>
<tr>
<td>Doubly chordal</td>
<td>NP-c [2]</td>
<td>?</td>
</tr>
<tr>
<td>Split</td>
<td>NP-c [2]</td>
<td>?</td>
</tr>
</tbody>
</table>

“NP-c”, “P” and “?” mean NP-complete, polynomial and open problem, respectively.

<table>
<thead>
<tr>
<th>Class</th>
<th>k-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
<th>${k}$-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees, Block graphs, Cacti</td>
<td>P [4]</td>
<td>?</td>
</tr>
<tr>
<td>Complete multipartite</td>
<td>P [1]</td>
<td>?</td>
</tr>
<tr>
<td>Chordal bipartite</td>
<td>P [2]</td>
<td>?</td>
</tr>
<tr>
<td>Doubly chordal</td>
<td>NP-c [2]</td>
<td>?</td>
</tr>
<tr>
<td>Split</td>
<td>NP-c [2]</td>
<td>?</td>
</tr>
</tbody>
</table>

Polynomial instances
Theorem

G, a graph; $k \in \mathbb{Z}_+$ and S_k, edgeless graph on k vertices. Then $\gamma_{\{k\},t}(G) = \gamma_{\times k,t}(G \cdot S_k)$.
Theorem

G, a graph; $k \in \mathbb{Z}_+$ and S_k, edgeless graph on k vertices. Then $\gamma_{\{k\},t}(G) = \gamma_{\times k,t}(G \bullet S_k)$.

$G \bullet H$: lexicographic product

- $V(G \bullet H) = V(G) \times V(H)$
- (u_1, v_1) and (u_2, v_2) adjacent in $G \bullet H$ when
 - u_1 adjacent to u_2 in G
 - $u_1 = u_2$ and v_1 adjacent to v_2 in H.
Theorem

G, a graph; $k \in \mathbb{Z}_+$ and S_k, edgeless graph on k vertices. Then $\gamma_{\{k\},t}(G) = \gamma_{\times\, k,t}(G \bullet S_k)$.

$G \bullet H$: lexicographic product

- $V(G \bullet H) = V(G) \times V(H)$
- (u_1, v_1) and (u_2, v_2) adjacent in $G \bullet H$ when
 - u_1 adjacent to u_2 in G
 - $u_1 = u_2$ and v_1 adjacent to v_2 in H.

$G = K_{1,2}$, $H = S_3$, $K_{3,6}$
Theorem

Let G, a graph; $k \in \mathbb{Z}_+$ and S_k, edgeless graph on k vertices. Then $\gamma_{\{k\},t}(G) = \gamma_{\times k,t}(G \bullet S_k)$.

$G \bullet H$: lexicographic product

- $V(G \bullet H) = V(G) \times V(H)$
- (u_1, v_1) and (u_2, v_2) adjacent in $G \bullet H$ when
 - u_1 adjacent to u_2 in G
 - $u_1 = u_2$ and v_1 adjacent to v_2 in H.

Corollary

k fixed and F, S s.t. if $G \in F$ then $G \bullet S_k \in S$. If k-DOM-T is polynomial time solvable on S, then $\{k\}$-DOM-T on F also is.
G is *complete multipartite* if $V(G)$ can be partitioned into non-empty independent sets with all possible edges between any of these sets.

\[\{k\}\text{-DOM-T on complete multipartite graphs} \]

\[G \text{ is complete multipartite if } V(G) \text{ can be partitioned into non-empty independent sets with all possible edges between any of these sets.} \]

\[G = K_{n_1}, \ldots, K_{n_p} \text{ complete } p\text{-partite graph. Then, } p \geq k + 1, \text{ then } \gamma \times k, t(G) = k + 1; \]

\[p = k \text{ and } k - 1 \sum_{i=1}^{p} n_i \geq k, \text{ then } \gamma \times k, t(G) = k + 2; \]

\[p \leq k - 1 \text{ and } n_1 \geq \lceil kp - 1 \rceil, \text{ then } \gamma \times k, t(G) = \lceil pk - 1 \rceil \]

$p \geq 2, \ n_1 \leq n_2 \leq \cdots \leq n_p, \ G = K_{n_1, \ldots, n_p}$ complete p-partite graph. Then,

- $p \geq k + 1$, then $\gamma_{\times k, t}(G) = k + 1$;
- $p = k$ and $\sum_{i=1}^{k-1} n_i \geq k$, then $\gamma_{\times k, t}(G) = k + 2$;
- $p \leq k - 1$ and $n_1 \geq \left\lceil \frac{k}{p-1} \right\rceil$, then $\gamma_{\times k, t}(G) = \left\lceil \frac{pk}{p-1} \right\rceil$ [1].

$\{k\}$-DOM-T on complete multipartite graphs

$p \geq 2, \ n_1 \leq n_2 \leq \cdots \leq n_p, \ \ G = K_{n_1, \ldots, n_p}$ complete p-partite graph. Then,

- $p \geq k + 1$, then $\gamma_{\times k, t}(G) = k + 1$;
- $p = k$ and $\sum_{i=1}^{k-1} n_i \geq k$, then $\gamma_{\times k, t}(G) = k + 2$;
- $p \leq k - 1$ and $n_1 \geq \lceil \frac{k}{p-1} \rceil$, then $\gamma_{\times k, t}(G) = \lceil \frac{pk}{p-1} \rceil$ \[1\].

Since $G = K_{n_1, \ldots, n_p} \Rightarrow G \bullet S_k = K_{kn_1, \ldots, kn_p}$.

Corollary

$p \geq 2, \ G = K_{n_1, \ldots, n_p} \ (n_1 \leq \cdots \leq n_p)$ complete p-partite graph:

1. $\gamma_{\{k\}, t}(G) = k + 1$ if $p \geq k + 1$,
2. $\gamma_{\{k\}, t}(G) = k + 2$ if $p = k$,
3. $\gamma_{\{k\}, t}(G) = \lceil \frac{pk}{p-1} \rceil$ if $p \leq k - 1$.
A bipartite graph is *chordal bipartite* if each cycle of length at least 6 has a chord.
A bipartite graph is *chordal bipartite* if each cycle of length at least 6 has a chord.

A graph is *chordal bipartite* if it is \{hole, triangle\}− free.

\[hole \equiv \text{cycle with at least 5 vertices}. \]
A bipartite graph is *chordal bipartite* if each cycle of length at least 6 has a chord.

A graph is *chordal bipartite* if it is \{hole, triangle\}− free.

\(hole \equiv \) cycle with at least 5 vertices.

1. If \(G \) is \{hole, triangle\}− free then \(G \cdot S_k \) also is.
2. \(k\)-DOM-T is polynomial on chordal bipartite graphs ([2]).

Corollary

\(\{k\}\)-DOM-T is polynomial time solvable on chordal bipartite graphs.

Other graph classes studied

- \(\mathcal{F} \)-free graphs, for a family \(\mathcal{F} \) with certain structure.
Other graph classes studied

- \mathcal{F}-free graphs, for a family \mathcal{F} with certain structure.

Since we could express k-DOM-T in LinEMSOL, k-DOM-T is polynomial in bounded \textit{clique-width} graphs. Besides, if $cwd(G)$ is bounded then also is $cwd(G \bullet S_k)$. Then, \{k\}-DOM-T is polynomial in bounded \textit{clique-width} graphs.
$X(u) \leftrightarrow u \in X$.

Finding $\gamma_{\times k,t}(G) \Leftrightarrow$ finding z s.t.

$|z(X)|_1 = \min\{|z'(X)|_1 : \theta(X) \text{ is true for } G \text{ and } z'\}$, where

$$
\theta(X) = \forall v \left(\bigwedge_{1 \leq r \leq k} A_r(X, v, u_1, \ldots, u_r) \right)
$$

$A_1(X, v, u_1) := \exists u_1 [X(u_1) \land \text{adj}(v, u_1)]$,

and for $r > 1$:

$$
A_r(X, v, u_1, \ldots, u_r) := \exists u_r \left[X(u_r) \land \text{adj}(v, u_r) \land \bigwedge_{1 \leq i \leq r-1} \neg(u_r = u_i) \right].
$$
NP-completeness results
Bipartite planar graphs

V. Leoni

k-tuple total & total \(\{k\} \)-dominations
1-DOM-T on bipartite planar graphs

Theorem

1-DOM-T is NP-complete on bipartite planar graphs.

Vertex cover in G: some vertices intersecting all the edges

VERTEX COVER PROBLEM

Instance: $G = (V(G), E(G))$, $j \in \mathbb{N}$.

Question: $\exists C \subseteq V(G)$, $|C| \leq j$ s.t. every xy has either $x \in C$ or $y \in C$?

A reduction from VC on planar graphs to DOM-T:
1-DOM-T is NP-complete on bipartite planar graphs.

Vertex cover in G: some vertices intersecting all the edges

VERTEX COVER PROBLEM

Instance: $G = (V(G), E(G))$, $j \in \mathbb{N}$.

Question: $\exists C \subseteq V(G)$, $|C| \leq j$ s.t. every xy has either $x \in C$ or $y \in C$?
Theorem

1-DOM-T is NP-complete on bipartite planar graphs.

- **Vertex cover in G**: some vertices intersecting all the edges

VERTEX COVER PROBLEM

Instance: $G = (V(G), E(G)), \ j \in \mathbb{N}$.

Question: \(\exists \ C \subseteq V(G), \ |C| \leq j \) s.t. every \(xy \) has either \(x \in C \) or \(y \in C \)?

A reduction from VC on planar graphs to DOM-T:

![Graphs](image-url)
Theorem

DOM-T is NP-complete on bipartite planar graphs.

- **Vertex cover in G:** some vertices intersecting all the edges

VERTEX COVER PROBLEM (VC)

Instance: \(G = (V(G), E(G)), \ j \in \mathbb{N}. \)

Question: \(\exists C \subseteq V(G), \ |C| \leq j \) s.t. every \(xy \) has either \(x \in C \) or \(y \in C \)?

A reduction from VC on planar graphs to DOM-T:
Theorem

For $k \in \{2, 3\}$, $\gamma_{x,k,t}(H(G)) = \gamma_{x,(k-1),t}(G) + 2^k |V(G)|$.

Corollary

For $k \in \{2, 3\}$, k-DOM-T is NP-c on bipartite planar graphs.

Remark: For a bipartite planar graph and $k \geq 4$, there is no k-tuple total domination.
Theorem

For $k \in \{2, 3\}$, $\gamma_{x,k,t}(H(G)) = \gamma_{x,(k-1),t}(G) + 2^k |V(G)|$.
2,3-DOM-T on bipartite planar graphs

Theorem

For $k \in \{2, 3\}$, $\gamma_{\times k,t}(H(G)) = \gamma_{\times (k-1),t}(G) + 2^k|V(G)|$.

Corollary

For $k \in \{2, 3\}$, k-DOM-T is NP-c on bipartite planar graphs.

Remark: For a bipartite planar graph and $k \geq 4$, there is no k-tuple total dominating function.
Theorem

For $k \in \mathbb{Z}_+$, $\gamma\{k\}, t(H_1(G)) = \gamma\left\lfloor \frac{k}{2} \right\rfloor, t(G) + |V(G)| \gamma\{k\}, t(C_6)$.

Lemma

C_n chordless cycle with $n \geq 3$. Then,

- $\gamma\{k\}, t(C_n) = \left\lfloor \frac{nk}{2} \right\rfloor + 1$ if k is odd and $n = 2(\text{mod } 4)$,
- $\gamma\{k\}, t(C_n) = \left\lfloor \frac{nk}{2} \right\rfloor$ in other case.

$\gamma\{k\}, t(C_6) = 3k + 1$ if k odd; $\gamma\{k\}, t(C_6) = 3k$ if k even.
Theorem

For \(k \in \mathbb{Z}_+ \), \(\gamma_{\{k\},t}(H_1(G)) = \gamma_{\lfloor \frac{k}{2} \rfloor},t(G) + |V(G)|\gamma_{\{k\},t}(C_6) \).

Corollary

For every fixed \(k \in \mathbb{Z}_+ \), \(\{k\}\)-DOM-T is NP-c on bipartite planar graphs.
Partial summary

<table>
<thead>
<tr>
<th>Class</th>
<th>k-DOM-T</th>
<th>${k}$-DOM-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded clique-width</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Complete multipartite</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Chordal bipartite</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Doubly chordal</td>
<td>NP-c</td>
<td>?</td>
</tr>
<tr>
<td>Bipartite</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>Bipartite planar</td>
<td>NP-c (for $k = 2, 3$)</td>
<td>NP-c</td>
</tr>
<tr>
<td>Planar</td>
<td>NP-c (for $k = 2, 3$)</td>
<td>NP-c</td>
</tr>
</tbody>
</table>
Further study: NP-completeness of 4, 5-DOM-T on planar graphs

Remark: For a planar graph and $k \geq 6$, there is no k-tuple total dom function.
Further study: NP-completeness of 4, 5-DOM-T on planar graphs

Remark: For a planar graph and $k \geq 6$, there is no k-tuple total dom function.

Theorem

$$\gamma_{\times 4,t}(P(G)) = \gamma_{\times 3,t}(G) + 6|V(G)|.$$
Further study: NP-completeness of 4, 5-DOM-T on planar graphs

Remark: For a planar graph and \(k \geq 6 \), there is no \(k \)-tuple total dom function.

Theorem

\[
\gamma_{4,t}(P(G)) = \gamma_{3,t}(G) + 6|V(G)|.
\]

Theorem

\[
\gamma_{5,t}(P(G)) = \gamma_{4,t}(G) + 12|V(G)|.
\]

Corollary

For \(k \in \{4, 5\} \), \(k \)-DOM-T is NP-c on planar graphs.
<table>
<thead>
<tr>
<th>Class</th>
<th>k-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
<th>${k}$-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded clique-width</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Complete multipartite</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Chordal bipartite</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Doubly chordal</td>
<td>NP-c</td>
<td>?</td>
</tr>
<tr>
<td>Bipartite</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>Bipartite planar</td>
<td>NP-c (for $k = 2, 3$)</td>
<td>NP-c</td>
</tr>
<tr>
<td>Planar</td>
<td>NP-c (for $k = 2, 3, 4, 5$)</td>
<td>NP-c</td>
</tr>
</tbody>
</table>
Final summary

<table>
<thead>
<tr>
<th>Class</th>
<th>k-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
<th>${k}$-DOM-T (fixed $k \in \mathbb{Z}_+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded clique-width</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Complete multipartite</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Chordal bipartite</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Doubly chordal</td>
<td>NP-c</td>
<td>?</td>
</tr>
<tr>
<td>Bipartite</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>Bipartite planar</td>
<td>NP-c (for $k = 2, 3$)</td>
<td>NP-c</td>
</tr>
<tr>
<td>Planar</td>
<td>NP-c (for $k = 2, 3, 4, 5$)</td>
<td>NP-c</td>
</tr>
<tr>
<td>Split</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
</tbody>
</table>
Some open problems

1. Solve the c.c. of \(\{k\}\text{-DOM-T} \) for doubly chordal graphs.
Some open problems

1. Solve the c.c. of $\{k\}$-DOM-T for doubly chordal graphs.

2. Characterize graphs that satisfy $\gamma_{\{k\},t}(G) = \gamma_{\times k,t}(G)$.
Some open problems

1. Solve the c.c. of \(\{k\}\text{-DOM-T} \) for doubly chordal graphs.

2. Characterize graphs that satisfy \(\gamma\{k\},t(G) = \gamma_{k,t}(G) \).

3. Chordal bipartite graphs are \(\mathcal{F}\text{-free graphs} \) \((\mathcal{F} = \{\text{hole, triangle}\})\).
 Find an algorithm for any of the problems for chordal bipartite graphs.
1. Solve the c.c. of $\{k\}$-DOM-T for doubly chordal graphs.

2. Characterize graphs that satisfy $\gamma_{k,t}(G) = \gamma_{k,\times k}(G)$.

3. Chordal bipartite graphs are \mathcal{F}-free graphs ($\mathcal{F} = \{\text{hole, triangle}\}$). Find an algorithm for any of the problems for chordal bipartite graphs.

4.

THANK YOU! / ¡GRACIAS! / ¡OBRIGADO!