On the diclique-behavior of digraphs

Marisa Gutierrez1,3 Bernardo LLano2 Silvia B. Tondato1

[1] Dto de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,

[2] Universidad Autónoma Metropolitana-Iztapalapa,

La Plata, Noviembre 2016
A digraph $D = (V, A)$, V a non-empty finite set and $A \subseteq V \times V$. Multiple arcs are not allowed.

Notation: $xy \in A$ or $x \rightarrow y$

Observation: We consider irreflexive digraphs, i.e digraphs without loops.
Example: $V(D) = \{0, 1, 2\}$; $A(D) = \{01, 20, 21\}$
Prisner: Disimplex

\[X \subseteq V, \ Y \subseteq V, \] not empty sets, not necessarily disjoint.

A \textit{disimplex} \(K(X, Y) \) of \(D \) is the subdigraph whose vertex set is \(X \cup Y \) and an arc goes from every vertex of \(X \) to every vertex of \(Y \) (when \(X \cap Y \neq \emptyset \), loops are not considered).
Example: $X = \{2\}$, $Y = \{1\}$. Notation: $\{2\} \rightarrow \{1\}$.
Prisner: Disimplex

Observation: $\{2\} \rightarrow \{1\} \subset \{0, 2\} \rightarrow \{0, 1\}$
A diclique $K(X, Y)$ of D is a disimplex that is not a proper subdigraph of any other disimplex.
The **diclique operator** $\overrightarrow{k}(D)$ is defined by

$$V(\overrightarrow{k}(D)) = \{K(X, Y) : K(X, Y) \text{ is a diclique of } D\} \text{ and}$$

$$A(\overrightarrow{k}(D)) = \{(K(X, Y), K(X', Y')) : Y \cap X' \neq \emptyset\}.$$
Diclique operator: Example

\[D_k(D) \]
What does it know about diclique operator?
Lemma[Prisner]:

Every digraph D is the diclique digraph of some digraph.
Prisner: Diclique operator
Iterated diclique digraphs

The *iterated* diclique digraphs $\overrightarrow{k}^n(D)$ are defined by:

$$\overrightarrow{k}^0(D) = D \text{ and } \overrightarrow{k}^n(D) = \overrightarrow{k}(\overrightarrow{k}^{n-1}(D))$$
Iterated diclique digraphs

A digraph D is \overrightarrow{k}-\textit{divergent} if $|V(\overrightarrow{k}^n(D))|$ tends to infinity with n, otherwise D is \overrightarrow{k}-\textit{convergent}
Iterated diclique digraphs

A digraph D is \overrightarrow{k}-periodic if there is $n \in \mathbb{N}$ such that $\overrightarrow{k^n}(D) \approx D$.

If $n = 1$ then D is self-diclique.
Divergence

What does it know about divergence?

What theoretical results are known?
It is known about divergence:

Lemma[Prisner]:

If the irreflexive digraph D contains some irreflexive K_{n}^{i}, then $K_{m}^{i} \subseteq \vec{k}(D)$ with $m = \left(\frac{n}{\lceil \frac{n}{2} \rceil}\right)$.
It is known about divergence:

Definition: An induced subdigraph H of D is called a *retract* of D if there is a retraction $r : V(D) \to V(H)$, i.e. r is a weak homomorphism such that there is $h : V(H) \to V(D)$ such that $rh = id_{V(D)}$.

Corollary [Prisner]:

All finite digraph containing some (irreflexive) K^n_1 as retract must \overrightarrow{k}-diverge.
What does it know about \vec{k}-periodicity?
Problem about periodicity:

Problem (suggested by Prisner): Are there, besides the directed cycles, more \vec{k}-periodic digraphs in the family of all finite strongly connected digraphs?
About periodicity

Answer: A self-diclique digraph different from cycle was given by Zelinka 2002: $\overrightarrow{O_3}$ denotes an Eulerian orientation of O_3 (the complement on 3 disjoint isomorphic copies of the complete K_2).
About periodicity

Answer: An infinite family of self-diclique digraphs given by Figueroa-LLano 2010: for $n \geq 5$ $\overrightarrow{C_n}((1, 2))$ having $V(\overrightarrow{C_n}((1, 2))) = \mathbb{Z}_n$, $A(\overrightarrow{C_n}((1, 2))) = \{(i, j) : i, j \in \mathbb{Z}_n \text{ and } j - i \in \{1, 2\}\}$.
About periodicity

Answer: A characterization of the self-diclique circulant digraph and an infinite family of non-circulant self-diclique digraphs given by Frick-LLano-Zuazua 2015:

The only self-diclique circulant digraphs without symmetric arcs are: \(\vec{C}_n(n \geq 3) \) and \(\vec{C}_n((1, 2))(n \geq 5) \).

The digraph for \(m \geq 3, D_m \) with \(V(D_m) = Z_{2m} \) and

\[
A(D_m) = \{(i, i + j) : i = 0, 2, 3, \ldots, 2m - 2; \ j = 1, 2, 3\} \cup \{(i, i + j) : i = 1, 3, 5, \ldots, 2m - 1; \ j = 1, 2\}
\]
Open problem resect to periodicity:

Open question: Are there, besides the digraphs $\vec{C}_n(n \geq 3)$, $\vec{C}_n(1, 2)(n \geq 5)$ and $D_m(m \geq 3)$ any other strong self-diclique digraphs without symmetric arcs?
Convergence

A family convergent: The Fast-Fourier-Transform digraph
It is known about convergence

Family of convergence digraphs:

1. $FFT(n)$ with $|V(FFT(n))| = Z_{2^n(n+1)} = 2^n(n+1)$

 [Heydemann -Sotteau]

2. All dicliques of $FFT(n)$ are $\overrightarrow{K}_{2,2}$.

All satisfying $\overrightarrow{k}(FFT(n)) = FFT(n - 1)$
Example: $V(FFT(2)) = Z_{12}$, dicliques $\{i, i+4\} \Rightarrow \{i+1, i+5\} i \in \{0, 6\}$; $\{i, i+3\} \Rightarrow \{i+1, i+4\}$ with $i \in \{1, 4\}$
Contents

- Convergence
- Divergence
Contents: A family convergent

Convergence: Butterfly $BF(n)$ [Heydemann and D. Sotteau]
BF(2)

dicliques BF(2)

02→13 15→04

46→57 37→26
Convergence

Proposition

\[\overrightarrow{k}^n(BF(n)) \approx \overrightarrow{C}_n \text{ for every } n \geq 2. \]
Divergence: Clique vs Diclique

<table>
<thead>
<tr>
<th>Clique operator: K</th>
<th>Diclique operator: \vec{k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retractions</td>
<td>Retractions</td>
</tr>
<tr>
<td>Octahedron</td>
<td>Who plays the role?</td>
</tr>
<tr>
<td>Coaffinations</td>
<td>?</td>
</tr>
</tbody>
</table>
Divergence: Irreflexive strongly connected digraphs

Binary digraph relation \(f : D_1 \rightarrow D_2 \) is a subset \(V(D_1) \times V(D_2) \) such that:

1. \(f(u) \neq \emptyset \) for every \(u \in V(D_1) \)

2. if \(u \rightarrow v \), then \(u' \rightarrow v' \) for every \(u' \in f(u) \) and \(v' \in f(v) \).
Divergence: Irreflexive strongly connected digraphs

Digraph relation induces a binary relation on $V(\overrightarrow{k}(D_1)) \times V(\overrightarrow{k}(D_2))$

$f_{\overrightarrow{k}}(A \rightarrow\!\!\!\!\!\rightarrow B) = \{A' \rightarrow\!\!\!\!\!\rightarrow B' \in \overrightarrow{k}(D_2) : f(A \rightarrow\!\!\!\!\!\rightarrow B) = f(A) \rightarrow\!\!\!\!\!\rightarrow f(B) \subseteq A' \rightarrow\!\!\!\!\!\rightarrow B'\}$

Proposition: $f_{\overrightarrow{k}}$ is a digraph relation. If f is digraph isomorphism then $f_{\overrightarrow{k}}$ too.
Divergence: Irreflexive strongly connected digraphs

Automorphic digraph D: (D, α)

Symmetric-preserving relation:

$f : D_1 \rightarrow D_2$ satisfying

$f \circ \alpha = \beta \circ f$

Proposition: $f : D_1 \rightarrow D_2$ is a symmetry-preserving relation between automorphic digraph. Then $f \xrightarrow{k}$ is too.
Divergence: Irreflexive strongly connected digraphs

Automorphism coaffine: α of D

1. $\alpha(u) \neq u$ for every $u \in V(D)$

2. $u, \alpha(u)$ are not adjacent for every $u \in V(D)$

3. $\alpha(u) \notin A$ if $u \in A$ and $\alpha(u) \notin B$ if $u \in B$ for every $A \implies B$ diclique of D
Example coaffine

[Gray-Macpherson-Praeger-Royle] H_0 with $V(H_0) = Z_8$

Coaffination of H_0:

$\alpha : Z_8 \rightarrow Z_8$ defined by $\alpha(i) = i + 4 (mod 8)$ for $i \in \{0, 1, 2, 3, 4\}$.

α-orbits (invariants): $\{0, 4\}$, $\{1, 5\}$, $\{2, 6\}$ and $\{3, 7\}$.
Coaffinations:

Proposition: If $D = (D, \alpha)$ is coaffine, then $\overrightarrow{k}(D) = (\overrightarrow{k}(D), \alpha \overrightarrow{k})$ is too.

$D = (D, \alpha)$ coaffine.

rank of D ($r(D)$) = number of α-orbits

Proposition: If $f : D_1 \rightarrow D_2$ symmetry-preserving relation between coaffine digraphs. Then $r(D_1) \leq r(D_2)$. Also if D_1 is rank divergent, D_2 is too.
Who plays the role of the octahedron?
dicliques de H_0

0 0 \rightarrow 2,3,5 1,6,7 \rightarrow 0 0
1 1 \rightarrow 0,2,7 3,4,6 \rightarrow 1 1
2 2 \rightarrow 4,5,7 1,3,0 \rightarrow 2 2
3 3 \rightarrow 2,4,1 5,6,0 \rightarrow 3 3
4 4 \rightarrow 6,7,1 3,5,2 \rightarrow 4 4
5 5 \rightarrow 4,6,3 7,0,2 \rightarrow 5 5
6 6 \rightarrow 0,1,3 5,7,4 \rightarrow 6 6
7 7 \rightarrow 6,0,5 1,2,4 \rightarrow 7 7

dicliques de $k(H_0)$

$0 \rightarrow 2,3,5,1,2,3,4,5,6,7$ $0 \rightarrow 0,2,3,5$

$1 \rightarrow 0,2,7,0,2,3,4,5,6,7$ $1 \rightarrow 1,0,2,7$

copies H_0
Divergence

Theorem: H_0 is \vec{k}-diverges

Corollary: All finite digraph containing H_0 as retract must \vec{k}-diverge.
Open problems:

Open question: Are there, besides the digraphs \(\vec{C}_n(n \geq 3) \), \(\vec{C}_n(1, 2)(n \geq 5) \) and \(D_m(m \geq 3) \) any other strong self-diclique digraphs without symmetric arcs?

Open question: Are there, besides retract of \(H_0 \), any other divergence digraphs?
References:

MUCHAS GRACIAS!