On the P_3-Hull Number of the Cartesian Product of Graphs

Julliano R. Nascimento

Instituto de Informática, Universidade Federal de Goiás, GO, Brazil
jullianorosanascimento@inf.ufg.br

Joint work with
Erika M. M. Coelho, Hebert Coelho, Jayme L. Szwarcfiter
Outline

1. Introduction
 • Motivation

2. Results
 • Lower and Upper Bounds
 • Equalities
Motivation

The spread of disease on a square grid [Bollobás (2006)].

Figure 1.1: 4×4 Grid.
Motivation

The spread of disease on a square grid [Bollobás (2006)].

Figure 1.1: 4 × 4 Grid.
Introduction

Motivation

The spread of disease on a square grid [Bollobás (2006)].

Figure 1.1: 4×4 Grid.
Motivation

The spread of disease on a square grid [Bollobás (2006)].

Figure 1.1: 4×4 Grid.
Motivation

The spread of disease on a square grid [Bollobás (2006)].

Figure 1.1: 4 × 4 Grid.
The P_3-convexity on a graph G

We consider only finite, simple and undirected graphs. Let G be such a graph with vertex set $V(G)$. Given a set $S \subseteq V(G)$:

- Define the P_3-interval $I[S]$ as the set S with the set of vertices in $V(G) \setminus S$ with at least two neighbors in S.
- If $I[S] = S$, then the set S is P_3-convex.
- The P_3-convex hull $H(S)$ of S is the smallest P_3-convex set containing S.
- If $H(S) = V(G)$ we say that S is a P_3-hull set of G.
- The cardinality $h(G)$ of a minimum P_3-hull set in G is called the P_3-hull number of G.

The **P**3-convexity on a graph **G**

We consider only finite, simple and undirected graphs. Let **G** be such a graph with vertex set **V**(G). Given a set **S** \(\subseteq V(G)\):

- Define the **P**3-**interval** \(I[S]\) as the set **S** with the set of vertices in **V**(G) \(\setminus S\) with at least two neighbors in **S**.
- If \(I[S] = S\), then the set **S** is **P**3-**convex**.
- The **P**3-**convex hull** **H**(S) of **S** is the smallest **P**3-**convex** set containing **S**.
- If **H**(S) = **V**(G) we say that **S** is a **P**3-**hull** set of **G**.
- The cardinality **h**(G) of a minimum **P**3-hull set in **G** is called the **P**3-**hull number** of **G**.
The P_3-convexity on a graph G

We consider only finite, simple and undirected graphs. Let G be such a graph with vertex set $V(G)$. Given a set $S \subseteq V(G)$:

- Define the P_3-interval $I[S]$ as the set S with the set of vertices in $V(G) \setminus S$ with at least two neighbors in S.
- If $I[S] = S$, then the set S is P_3-convex.
- The P_3-convex hull $H(S)$ of S is the smallest P_3-convex set containing S.
- If $H(S) = V(G)$ we say that S is a P_3-hull set of G.
- The cardinality $h(G)$ of a minimum P_3-hull set in G is called the P_3-hull number of G.
The P_3-convexity on a graph G

We consider only finite, simple and undirected graphs. Let G be such a graph with vertex set $V(G)$. Given a set $S \subseteq V(G)$:

- Define the P_3-interval $I[S]$ as the set S with the set of vertices in $V(G) \setminus S$ with at least two neighbors in S.
- If $I[S] = S$, then the set S is P_3-convex.
- The P_3-convex hull $H(S)$ of S is the smallest P_3-convex set containing S.
- If $H(S) = V(G)$ we say that S is a P_3-hull set of G.
- The cardinality $h(G)$ of a minimum P_3-hull set in G is called the P_3-hull number of G.
The P_3-convexity on a graph G

We consider only finite, simple and undirected graphs. Let G be such a graph with vertex set $V(G)$. Given a set $S \subseteq V(G)$:

- Define the P_3-interval $I[S]$ as the set S with the set of vertices in $V(G) \setminus S$ with at least two neighbors in S.
- If $I[S] = S$, then the set S is P_3-convex.
- The P_3-convex hull $H(S)$ of S is the smallest P_3-convex set containing S.
- If $H(S) = V(G)$ we say that S is a P_3-hull set of G.
- The cardinality $h(G)$ of a minimum P_3-hull set in G is called the P_3-hull number of G.
Introduction

The P_3-convexity on a graph G

We consider only finite, simple and undirected graphs. Let G be such a graph with vertex set $V(G)$. Given a set $S \subseteq V(G)$:

- Define the P_3-interval $I[S]$ as the set S with the set of vertices in $V(G) \setminus S$ with at least two neighbors in S.
- If $I[S] = S$, then the set S is P_3-convex.
- The P_3-convex hull $H(S)$ of S is the smallest P_3-convex set containing S.
- If $H(S) = V(G)$ we say that S is a P_3-hull set of G.
- The cardinality $h(G)$ of a minimum P_3-hull set in G is called the P_3-hull number of G.
Figure 1.2: Another set $S \subseteq V(G)$.
Figure 1.2: The P_3-interval $I[S]$ of S.
Introduction

Figure 1.2: The P_3-convex hull $H(S) = V(G)$. $h(G) = 6$.
Introduction

Related Work

- [Bollobás (2006)] determined the P_3-hull number in grids $m \times n$: $h(P_m \Box P_n) = \lceil \frac{m+n}{2} \rceil$.
- [Centeno et al. (2011)] proved that, given a graph G and an integer k, to decide whether $h(G) \leq k$ is NP-complete.
- [Duarte et al. (2015)]: the P_3-hull number can be determined in polynomial time for complementary prisms.

Our Aim

- We present lower and upper bounds for the P_3-hull number of the Cartesian product, $G \Box H$, of general graphs G and H;
- We determine the P_3-hull number of the Cartesian product $G \Box K_n$.
Introduction

Related Work

- [Bollobás (2006)] determined the P_3-hull number in grids $m \times n$: $h(P_m \square P_n) = \lceil \frac{m+n}{2} \rceil$.
- [Centeno et al. (2011)] proved that, given a graph G and an integer k, to decide whether $h(G) \leq k$ is NP-complete.
- [Duarte et al. (2015)]: the P_3-hull number can be determined in polynomial time for complementary prisms.

Our Aim

- We present lower and upper bounds for the P_3-hull number of the Cartesian product, $G \square H$, of general graphs G and H;
- We determine the P_3-hull number of the Cartesian product $G \square K_n$.
More Definitions

Cartesian product $G \square H$

The graph with vertex set $V(G) \times V(H)$. Two vertices (g, h) and (g', h') are adjacent precisely if $g = g'$ and $hh' \in E(H)$, or $gg' \in E(G)$ and $h = h'$.

Figure 2.1: The Cartesian product $C_3 \square C_5$.
Let G and H two graphs with vertex sets $V(G) = \{u_1, u_2, \ldots, u_m\}$ and $V(H) = \{v_1, v_2, \ldots, v_n\}$, respectively. We refer to line \mathcal{L}_i as the subset of vertices $\{(u_i, v_1), (u_i, v_2), \ldots, (u_i, v_n)\}$ of $V(G \Box H)$.

Figure 2.2: The lines \mathcal{L}_1 to \mathcal{L}_3 in the graph $C_3 \Box C_5$.
More Definitions

Column C_j

Let G and H two graphs with vertex sets $V(G) = \{u_1, u_2, ..., u_m\}$ and $V(H) = \{v_1, v_2, ..., v_n\}$, respectively. We refer to column C_j the subset of vertices $\{(u_1, v_j), (u_2, v_j), \ldots, (u_m, v_j)\}$ of $V(G \Box H)$.

![Diagram](image)

Figure 2.3: The columns C_1 to C_5 in the graph $C_3 \Box C_5$.
Lemma 1

Let G and H be nontrivial connected graphs, $S \subseteq V(G \square H)$ and an integer $p \geq 0$. Let $L'_i \subseteq L_i$, for some $i \in \{1, \ldots, m\}$ and $C'_j \subseteq C_j$, for some $j \in \{1, \ldots, n\}$, such that L'_i and C'_j induce connected graphs and $L'_i \cap C'_j \neq \emptyset$. Let

$$R = \{(u_k, v_l) \in V(G \square H) : (u_k, v_j) \in C'_j \text{ and } (u_i, v_l) \in L'_i\}.$$

If $(L'_i \cup C'_j) \subseteq I^p[S]$, then $R \subseteq H(S)$.
Results

\[G \square H \]

\[\mathcal{L}'_i \quad (u_i, v_j) \quad (u_i, v_l) \]

\[C'_j \quad (u_k, v_j) \quad (u_k, v_l) \]

\[C'_l \]
$G \square H$

R
Results

Projection

We call projection of the set $S \subseteq V(G \Box H)$ over the column C_j, $j \in \{1, \ldots, n\}$, the set formed by the vertices

$$S^{C_j} = \{(u_k, v_j) \in V(G \Box H) : (u_k, v) \in S, \text{ for any } v\}.$$
Lemma (Projection)

Let G and H be nontrivial connected graphs and $S \subseteq V(G \Box H)$. If $H(S) = V(G \Box H)$, then $H(S^{C_j}) = C_j$, $j \in \{1, \ldots, n\}$.
Figure 2.4: Projection of S over the column C_j.
Theorem (Lower Bound)

Let G and H be nontrivial connected graphs. Then
\[h(G \square H) \geq \max\{h(G), h(H)\}. \]
By contradiction, suppose that $h(G \square H) < \max\{h(G), h(H)\}$. Suppose that $h(G) \geq h(H)$. This way, $h(G \square H) < h(G)$.

\[G \cong C_j \]

\[G \square H \]
Type 1

Let G be a connected graph. The graph G is of the Type 1, if there exists a minimum P_3-hull set $S \subseteq V(G)$ that can be partitioned in two nonempty disjoint sets A and B, with $S = A \cup B$, in which $d(H(A), H(B)) \leq 1$.

Type 1a

Let G be a connected graph. The graph G is of the Type 1a, if there exists a minimum P_3-hull set $S \subseteq V(G)$ that can be partitioned in two nonempty disjoint sets A and B, with $S = A \cup B$, in which $d(H(A), H(B)) \leq 1$ and $|A| = 1$.
Type 1

Let G be a connected graph. The graph G is of the Type 1, if there exists a minimum P_3-hull set $S \subseteq V(G)$ that can be partitioned in two nonempty disjoint sets A and B, with $S = A \cup B$, in which $d(H(A), H(B)) \leq 1$.

Type 1a

Let G be a connected graph. The graph G is of the Type 1a, if there exists a minimum P_3-hull set $S \subseteq V(G)$ that can be partitioned in two nonempty disjoint sets A and B, with $S = A \cup B$, in which $d(H(A), H(B)) \leq 1$ and $|A| = 1$.
Theorem (Upper Bounds)

Let G and H be nontrivial connected graphs. Then:

$$h(G \Box H) \leq \begin{cases} h(G) + h(H) - 2, & \text{if } G \text{ and } H \text{ are of the Type 1a;} \\ h(G) + h(H) - 1, & \text{otherwise.} \end{cases}$$
If G and H are of the Type 1a:

$$h(G \Box H) \leq h(G) + h(H) - 2.$$
Otherwise (If G or H are not of the Type 1a):

$$h(G \Box H) \leq h(G) + h(H) - 1.$$
Let G be a nontrivial connected graph. Then,

$$h(G \Box K_n) = \begin{cases} h(G), & \text{if } G \text{ is of the Type 1;} \\ h(G) + 1, & \text{otherwise.} \end{cases}$$
If G is of the Type 1:
By Theorem Lower Bound,

$$h(G \square K_n) \geq h(G).$$
If G is of the Type 1:

\[h(G \Box K_n) \leq h(G). \]
Otherwise (If G is not of the Type 1):

$$h(G \square K_n) \leq h(G) + 1.$$
Otherwise (If G is not of the Type 1):
By contradiction, suppose that $h(G \square K_n) < h(G) + 1$.

$h(G \square K_n) \geq h(G) + 1$.
References

Bollobás, B. (2006)
The art of mathematics: Coffee time in Memphis
Cambridge University Press.

Irreversible conversion of graphs

Complexity properties of complementary prisms
Any Questions?