Minimal forbidden induced subgraphs characterization of Block B_0-VPG graphs

L. Alcón F. Bonomo M. P. Mazzoleni

Dto. de Matemática, FCE-UNLP, La Plata, Argentina
Dto. de Computación FCEN-UBA, Buenos Aires, Argentina

Latin American Workshop on Cliques in Graphs 2016
A **VPG representation** of a graph G is a collection of paths on a grid where the paths represent the vertices of G such that:

two vertices of G are adjacent in G if and only if the corresponding paths share at least one vertex of the grid.

A graph which has a VPG representation is called a **VPG graph**.
Introduction:

A VPG representation of a graph G is a collection of paths on a grid where the paths represent the vertices of G such that:

- two vertices of G are adjacent in G if and only if the corresponding paths share at least one vertex of the grid.

A graph which has a VPG representation is called a VPG graph.
The subclasses in which the number of bends (turns on a grid point) of each path is at most k, known as B_k-VPG, have been widely studied.

Figure: A graph G and a B_2-VPG representation of G.

In this work, we consider the subclass B_0-VPG.

A B_0-representation of G is a VPG representation in which each path in the representation is either a horizontal path or a vertical path on the grid.

A graph is B_0-VPG if it has a B_0-VPG representation.

The recognition problem is NP-complete for B_0-VPG. Although, there exists a polynomial time algorithm for deciding whether a given Chordal graph is B_0-VPG [5].
In this work, we consider the subclass \(B_0 \)-VPG.

A \(B_0 \)-representation of \(G \) is a VPG representation in which each path in the representation is either a horizontal path or a vertical path on the grid.

A graph is \(B_0 \)-VPG if it has a \(B_0 \)-VPG representation.

The recognition problem is \textbf{NP}-complete for \(B_0 \)-VPG. Although, there exists a \textbf{polynomial time} algorithm for deciding whether a given Chordal graph is \(B_0 \)-VPG \cite{5}.
Golumbic and Ries gave a characterization by forbidden induced subgraphs for the following three subclasses of Chordal B_0-VPG:

✓ Split B_0-VPG,
✓ Chordal B_0-VPG bull free,
✓ Chordal B_0-VPG claw free.

Moreover, for the class Split B_0-VPG this yields a linear time recognition algorithm.
Golumbic and Ries gave a characterization by forbidden induced subgraphs for the following three subclasses of Chordal B_0-VPG:

✓ Split B_0-VPG,
✓ Chordal B_0-VPG bull free,
✓ Chordal B_0-VPG claw free.

Moreover, for the class Split B_0-VPG this yields a linear time recognition algorithm.
In this work we study another subclass of Chordal B_0-VPG: Block B_0-VPG.

We present a minimal forbidden induced subgraphs characterization of this class.

Moreover, the proof of the main theorem provides an alternative recognition algorithm for B_0-VPG in the class of block graphs.
In this work we study another subclass of Chordal B_0-VPG: Block B_0-VPG.

We present a minimal forbidden induced subgraphs characterization of this class.

Moreover, the proof of the main theorem provides an alternative recognition algorithm for B_0-VPG in the class of block graphs.
In this work we study another subclass of Chordal B_0-VPG: Block B_0-VPG.

We present a minimal forbidden induced subgraphs characterization of this class.

Moreover, the proof of the main theorem provides an alternative recognition algorithm for B_0-VPG in the class of block graphs.
The following lemma is very important to obtain our results:

Lemma (Golumbic et al.)

In a B_0-VPG representation of a clique, all the corresponding paths share a common grid point.

Figure: A line clique and a cross clique.
Block graphs:

A block graph is a connected graph in which every two-connected component (block) is a clique.

A graph is Chordal if it does not contain any chordless cycle of length at least four.
Block graphs:

A block graph is a connected graph in which every two-connected component (block) is a clique.

A graph is Chordal if it does not contain any chordless cycle of length at least four.
A **diamond** is a graph obtained from K_4 by deleting exactly one edge.

![Diagram of a diamond](image)

Figure: Diamond.

Block graphs are connected chordal diamond-free graphs.
A **diamond** is a graph obtained from K_4 by deleting exactly one edge.

![Diamond](image)

Figure: Diamond.

* Block graphs are connected chordal diamond-free graphs.
A **cutpoint** is a vertex whose removal from the graph increases the number of connected components.

An **endblock** is a block having exactly one cutpoint.

An **almost endblock** is a block B having at least two cutpoints and such that exactly one of these cutpoints belongs to blocks (different from B) that are not endblocks.

An **internal block** is a block that is neither an endblock nor an almost endblock.
A **cutpoint** is a vertex whose removal from the graph increases the number of connected components.

An **endblock** is a block having exactly one cutpoint.

An **almost endblock** is a block B having at least two cutpoints and such that exactly one of these cutpoints belongs to blocks (different from B) that are not endblocks.

An **internal block** is a block that is neither an endblock nor an almost endblock.
A **cutpoint** is a vertex whose removal from the graph increases the number of connected components.

An **endblock** is a block having exactly one cutpoint.

An **almost endblock** is a block B having at least two cutpoints and such that exactly one of these cutpoints belongs to blocks (different from B) that are not endblocks.

An **internal block** is a block that is neither an endblock nor an almost endblock.
A **cutpoint** is a vertex whose removal from the graph increases the number of connected components.

An **endblock** is a block having exactly one cutpoint.

An **almost endblock** is a block B having at least two cutpoints and such that exactly one of these cutpoints belongs to blocks (different from B) that are not endblocks.

An **internal block** is a block that is neither an endblock nor an almost endblock.
Figure: Endblock=red, almost endbloque=blue, internal block=green.
A 3-cutpoint is a cutpoint that belongs to exactly three blocks.

A 2-cutpoint is a cutpoint that belongs to exactly two blocks, one of which is an endblock.
A **3-cutpoint** is a cutpoint that belongs to exactly three blocks.

A **2-cutpoint** is a cutpoint that belongs to exactly two blocks, one of which is an endblock.

Figure: 3-cutpoint=viiolet, 2-cutpoint=red.
The block-cutpoint-tree of a graph G, denoted $bc(G)$, is a graph such that:

- its vertices are in one-to-one correspondence with the blocks and cutpoints of G;
- two vertices of $bc(G)$ are adjacent if and only if one corresponds to a block H of G and the other to a cutpoint c of G, and $c \in H$.
The block-cutpoint-tree of a graph G, denoted $bc(G)$, is a graph such that:

- its vertices are in one-to-one correspondence with the blocks and cutpoints of G;

- two vertices of $bc(G)$ are adjacent if and only if one corresponds to a block H of G and the other to a cutpoint c of G, and $c \in H$.

The block-cutpoint-tree of a graph G, denoted $bc(G)$, is a graph such that:

- its vertices are in one-to-one correspondence with the blocks and cutpoints of G;

- two vertices of $bc(G)$ are adjacent if and only if one corresponds to a block H of G and the other to a cutpoint c of G, and $c \in H$.

Figure: A graph G and its block-cutpoint-tree.
A thin spider N_n is the graph whose $2n$ vertices can be partitioned into a clique $K = \{c_1, .., c_n\}$ and a stable set $S = \{s_1, .., s_n\}$ such that $s_i \sim c_j$ if and only if $i = j$.

We say that N_n is a thin spider of size n.

Figure: The thin spider N_5.

Golumbic and Ries proved that $N_5 \notin B_0$-VPG.
A thin spider N_n is the graph whose $2n$ vertices can be partitioned into a clique $K = \{c_1, \ldots, c_n\}$ and a stable set $S = \{s_1, \ldots, s_n\}$ such that $s_i \sim c_j$ if and only if $i = j$.

We say that N_n is a thin spider of size n.

![Figure: The thin spider N_5.](image)

Golumbic and Ries proved that $N_5 \notin B_0$-VPG.
Let \mathcal{F} denote the family of block graphs obtained from N_5 by applying the following procedure:

- consider a complete subgraph of size 4 having at least two 2-cutpoints, say v_1 and v_2, with endblocks B_1 and B_2, respectively;

- contract v_1 and v_2 into a single vertex x;

- replace $B_1 - \{x\}$ and $B_2 - \{x\}$ by two thin spiders of size 3, making x adjacent to the vertices of the cliques of both the spiders.
Let \(F \) denote the family of block graphs obtained from \(N_5 \) by applying the following procedure:

★ consider a complete subgraph of size 4 having at least two 2-cutpoints, say \(v_1 \) and \(v_2 \), with endblocks \(B_1 \) and \(B_2 \), respectively;

★ contract \(v_1 \) and \(v_2 \) into a single vertex \(x \);

★ replace \(B_1 - \{ x \} \) and \(B_2 - \{ x \} \) by two thin spiders of size 3, making \(x \) adjacent to the vertices of the cliques of both the spiders.
Let \mathcal{F} denote the family of block graphs obtained from N_5 by applying the following procedure:

- consider a complete subgraph of size 4 having at least two 2-cutpoints, say v_1 and v_2, with endblocks B_1 and B_2, respectively;

- contract v_1 and v_2 into a single vertex x;

- replace $B_1 - \{x\}$ and $B_2 - \{x\}$ by two thin spiders of size 3, making x adjacent to the vertices of the cliques of both the spiders.
Let \mathcal{F} denote the family of block graphs obtained from N_5 by applying the following procedure:

★ consider a complete subgraph of size 4 having at least two 2-cutpoints, say v_1 y v_2, with endblocks B_1 and B_2, respectively;

★ contract v_1 and v_2 into a single vertex x;

★ replace $B_1 - \{x\}$ y $B_2 - \{x\}$ by two thin spiders of size 3, making x adjacent to the vertices of the cliques of both the spiders.
In the following figure we offer two examples of graphs in \mathcal{F}.

\begin{tikzpicture}
 \node at (0,0) [circle,fill,inner sep=1.5pt] (v1) {}; \node at (1,0) [circle,fill,inner sep=1.5pt] (v2) {}; \node at (0,1) [circle,fill,inner sep=1.5pt] (v3) {\(B_1\)}; \node at (1,1) [circle,fill,inner sep=1.5pt] (v4) {}; \node at (0,2) [circle,fill,inner sep=1.5pt] (v5) {}; \node at (1,2) [circle,fill,inner sep=1.5pt] (v6) {\(B_2\)};
 \draw (v1) -- (v2) -- (v3) -- (v4) -- (v1) -- (v5) -- (v6) -- (v4) -- (v6) -- (v5);
 \draw [red] (v1) -- (v6);
\end{tikzpicture}

\begin{tikzpicture}
 \node at (0,0) [circle,fill,inner sep=1.5pt] (x) {}; \node at (1,0) [circle,fill,inner sep=1.5pt] (n1) {}; \node at (2,0) [circle,fill,inner sep=1.5pt] (n2) {\(N_3\)}; \node at (0,1) [circle,fill,inner sep=1.5pt] (n3) {\(N_3\)}; \node at (1,1) [circle,fill,inner sep=1.5pt] (n4) {\(x\)};
 \draw (n1) -- (x) -- (n2) -- (n3) -- (x) -- (n4) -- (n1) -- (n4) -- (n2) -- (n3) -- (n4);
\end{tikzpicture}
More examples of graphs in \mathcal{F}.

(a) (b) (c) (d)
Proposition

The family \mathcal{F} is infinite.

Corollary

Each graph in \mathcal{F} is minimal, i.e., it does not contain another graph in \mathcal{F} as induced subgraph.

Lemma

The graphs of \mathcal{F} are not B_0-VPG graphs.
Proposition

The family \mathcal{F} is infinite.

Corollary

Each graph in \mathcal{F} is minimal, i.e., it does not contain another graph in \mathcal{F} as induced subgraph.

Lemma

The graphs of \mathcal{F} are not B_0-VPG graphs.
Proposition

The family \mathcal{F} is infinite.

Corollary

Each graph in \mathcal{F} is minimal, i.e., it does not contain another graph in \mathcal{F} as induced subgraph.

Lemma

The graphs of \mathcal{F} are not B_0-VPG graphs.
The following theorem allows us to determine whether a Block VPG graph is B_0-VPG in terms of minimal forbidden induced subgraphs.

Theorem

Let G be a Block VPG graph. Then G is B_0-VPG if and only if G is \mathcal{F}-free.

Moreover, the graphs of \mathcal{F} are minimal not B_0-VPG.
Bibliography:

Thank you !!!
Gracias a todos por venir!!
¡Esperamos verlos pronto!