Álgebras de Hopf punteadas sobre grupos finitos simples de tipo Lie

Gastón Andrés García

Universidad Nacional de La Plata, Argentina
CONICET

UMA Rosario 2013
17 al 20 de septiembre de 2013
Joint work with N. Andruskiewitsch and G. Carnovale.
Joint work with N. Andruskiewitsch and G. Carnovale.

Main problem:
Joint work with N. Andruskiewitsch and G. Carnovale.

Main problem:
Classify all finite-dimensional pointed Hopf algebras H over an algebraically closed field \mathbb{k} of characteristic zero such that $G(H)$ is a non-abelian finite (simple) group.
Joint work with N. Andruskiewitsch and G. Carnovale.

Main problem:
Classify all finite-dimensional pointed Hopf algebras H over an algebraically closed field \mathbb{k} of characteristic zero such that $G(H)$ is a non-abelian finite (simple) group.

We say that a finite group G collapses
Joint work with N. Andruskiewitsch and G. Carnovale.

Main problem:
Classify all finite-dimensional pointed Hopf algebras \(H \) over an algebraically closed field \(\mathbb{k} \) of characteristic zero such that \(G(H) \) is a non-abelian finite (simple) group.

We say that a finite group \(G \) \textit{collapses} when every finite-dimensional pointed Hopf algebra \(H \), with \(G(H) \cong G \) is isomorphic to \(\mathbb{k}G \).
Background:
Background:

- If $G \cong \mathbb{Z}/p$ is simple abelian, then the classification is known:
 for $p = 2$ by [N]; for $p > 7$, by [AS3]; for $p = 3, 5, 7$, by [AS1]
 and [AS4].
Background:

- If $G \cong \mathbb{Z}/p$ is simple abelian, then the classification is known: for $p = 2$ by [N]; for $p > 7$, by [AS3]; for $p = 3, 5, 7$, by [AS1] and [AS4].

- If $G \cong A_m$, $m \geq 5$ is alternating, then G collapses [AFGV1].
Background:

- If $G \cong \mathbb{Z}/p$ is simple abelian, then the classification is known: for $p = 2$ by [N]; for $p > 7$, by [AS3]; for $p = 3, 5, 7$, by [AS1] and [AS4].

- If $G \cong \mathbb{A}_m$, $m \geq 5$ is alternating, then G collapses [AFGV1].

- If G is a sporadic simple group, then G collapses, except for the groups $G = Fi_{22}, B, M$ [AFGV2], [FV].
Background:

- If $G \simeq \mathbb{Z}/p$ is simple abelian, then the classification is known: for $p = 2$ by [N]; for $p > 7$, by [AS3]; for $p = 3, 5, 7$, by [AS1] and [AS4].

- If $G \simeq A_m, m \geq 5$ is alternating, then G collapses [AFGV1].

- If G is a sporadic simple group, then G collapses, except for the groups $G = Fi_{22}, B, M$ [AFGV2], [FV].

- $G = PSL_2(q)$ collapses for $q > 2$ even.
Background:

- If $G \cong \mathbb{Z}/p$ is simple abelian, then the classification is known: for $p = 2$ by [N]; for $p > 7$, by [AS3]; for $p = 3, 5, 7$, by [AS1] and [AS4].

- If $G \cong \mathbb{A}_m$, $m \geq 5$ is alternating, then G collapses [AFGV1].

- If G is a sporadic simple group, then G collapses, except for the groups $G = Fi_{22}, B, M$ [AFGV2], [FV].

- $G = PSL_2(q)$ collapses for $q > 2$ even.

- For G not simple, non-trivial examples also exists, among others: S_3 [AHS], S_4 [GG], D_{4t} for $t \geq 3$ [FG], G associated to an affine rack [GIV].
Let G be a finite group and H a pointed Hopf algebra with $G(H) \simeq G$.
Let G be a finite group and H a pointed Hopf algebra with $G(H) \cong G$.

Let $0 = H_{-1} \subset H_0 = \mathbb{k}G(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr} \ H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \cong R\# \mathbb{k}G(H)$.
Let G be a finite group and H a pointed Hopf algebra with $G(H) \cong G$.

Let $0 = H_{-1} \subset H_0 = \mathbb{k}G(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr } H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \cong R \# \mathbb{k}G(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $\mathbb{k}_G YD$.
Let G be a finite group and H a pointed Hopf algebra with $G(H) \cong G$.

Let $0 = H_{-1} \subset H_0 = \mathbb{k}G(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr } H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \cong R \# \mathbb{k}G(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $\mathbb{k}G \mathcal{YD}$. Also, the subalgebra of R generated by $V := R^1$ is isomorphic to the Nichols algebra $\mathcal{B}(V)$ of V.
Let G be a finite group and H a pointed Hopf algebra with $G(H) \simeq G$.

Let $0 = H_{-1} \subset H_0 = \mathbb{k} G(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr } H = \bigoplus_{n \in \mathbb{N}_0} H_n / H_{n-1} \simeq R \# \mathbb{k} G(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $\mathbb{k} G \mathcal{YD}$. Also, the subalgebra of R generated by $V := R^1$ is isomorphic to the Nichols algebra $\mathfrak{B}(V)$ of V. Hence

$$\dim H < \infty \iff \dim R < \infty \implies \dim \mathfrak{B}(V) < \infty.$$
Let G be a finite group and H a pointed Hopf algebra with $G(H) \cong G$.

Let $0 = H_{-1} \subset H_0 = \mathbb{k}G(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr } H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \cong R \# \mathbb{k}G(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $\mathbb{k}G \mathcal{YD}$. Also, the subalgebra of R generated by $V := R^1$ is isomorphic to the Nichols algebra $\mathcal{B}(V)$ of V. Hence
\[\dim H < \infty \iff \dim R < \infty \implies \dim \mathcal{B}(V) < \infty.\]

Question

Determine all $V \in \mathbb{k}G \mathcal{YD}$ with $\dim \mathcal{B}(V) < \infty$.
Let G be a finite group and H a pointed Hopf algebra with $G(H) \simeq G$.

Let $0 = H_{-1} \subset H_0 = \mathbb{k} G(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr} \ H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \simeq R \# \mathbb{k} G(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $\mathbb{k} G \mathcal{YD}$. Also, the subalgebra of R generated by $V := R^1$ is isomorphic to the Nichols algebra $\mathcal{B}(V)$ of V. Hence

$\dim H < \infty \iff \dim R < \infty \implies \dim \mathcal{B}(V) < \infty$.

Question

Determine all $V \in \mathbb{k} G \mathcal{YD}$ with $\dim \mathcal{B}(V) < \infty$.

The following are equivalent [AFGV1]:
Let G be a finite group and H a pointed Hopf algebra with $G(H) \simeq G$.

Let $0 = H_{-1} \subset H_0 = kG(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr } H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \simeq R \# kG(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $kG \mathcal{YD}$. Also, the subalgebra of R generated by $V := R^1$ is isomorphic to the Nichols algebra $\mathcal{B}(V)$ of V. Hence
\[
\text{dim } H < \infty \iff \text{dim } R < \infty \implies \text{dim } \mathcal{B}(V) < \infty.
\]

Question

Determine all $V \in kG \mathcal{YD}$ with $\text{dim } \mathcal{B}(V) < \infty$.

The following are equivalent [AFGV1]:

- G collapses.
Let G be a finite group and H a pointed Hopf algebra with $G(H) \cong G$.

Let $0 = H_{-1} \subset H_0 = kG(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr} \, H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \cong R \# kG(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $kG\mathcal{YD}$. Also, the subalgebra of R generated by $V := R^1$ is isomorphic to the Nichols algebra $\mathcal{B}(V)$ of V. Hence
\[\dim H < \infty \iff \dim R < \infty \implies \dim \mathcal{B}(V) < \infty. \]

Question

Determine all $V \in kG\mathcal{YD}$ with $\dim \mathcal{B}(V) < \infty$.

The following are equivalent [AFGV1]:

- G collapses.
- For every $V \in kG\mathcal{YD}$, $\dim \mathcal{B}(V) = \infty$.
Let G be a finite group and H a pointed Hopf algebra with $G(H) \cong G$.

Let $0 = H_{-1} \subset H_0 = k G(H) \subset H_1 \subset \ldots$ be the coradical filtration of H and $\text{gr } H = \bigoplus_{n \in \mathbb{N}_0} H_n/H_{n-1} \cong R \# k G(H)$.

$R = \bigoplus_{n \in \mathbb{N}_0} R^n$ is a graded Hopf algebra in $k G \mathcal{YD}$. Also, the subalgebra of R generated by $V := R^1$ is isomorphic to the Nichols algebra $\mathfrak{B}(V)$ of V. Hence

$$\dim H < \infty \iff \dim R < \infty \implies \dim \mathfrak{B}(V) < \infty.$$

Question

Determine all $V \in k G \mathcal{YD}$ with $\dim \mathfrak{B}(V) < \infty$.

The following are equivalent [AFGV1]:

- G collapses.
- For every $V \in k G \mathcal{YD}$, $\dim \mathfrak{B}(V) = \infty$.
- For every irreducible $V \in k G \mathcal{YD}$, $\dim \mathfrak{B}(V) = \infty$.

Fact:

All irreducible Yetter-Drinfeld modules over kG are of the form $M(O, \rho) = \text{Ind}_G^C_G(g)\rho$, where O is a conjugacy class of G and $\rho \in \text{Irr}(C_G(g))$ for $g \in O$ fixed.

Set $B(O, \rho) := B(M(O, \rho))$.

Question: Determine all pairs (O, ρ) with $\dim B(O, \rho) < \infty$.

Crucial: $B(O, \rho)$ depends only on the underlying braided vector space $(kO, c\rho)$, i.e., $B(O, \rho)$ depends only on the rack O and the non-principal 2-cocycle arising from ρ.

Question [AFGV1]: Determine all pairs (X, q), where X is a finite rack and q is a non-principal 2-cocycle, such that $\dim B(X, cq) < \infty$.
Fact: All irreducible Yetter-Drinfeld modules over $\mathbb{k}G$ are of the form $M(O, \rho) = \text{Ind}^G_{C_G(g)} \rho$.
Fact: All irreducible Yetter-Drinfeld modules over $\mathbb{k}G$ are of the form $M(\mathcal{O}, \rho) = \text{Ind}^G_{C_G(g)} \rho$, \mathcal{O} is a conjugacy class of G and $\rho \in \text{Irr} C_G(g)$ for $g \in \mathcal{O}$ fixed.
Fact: All irreducible Yetter-Drinfeld modules over $\mathbb{k}G$ are of the form $M(\mathcal{O}, \rho) = \text{Ind}^{G}_{C_{G}(g)} \rho$, where \mathcal{O} is a conjugacy class of G and $\rho \in \text{Irr} C_{G}(g)$ for $g \in \mathcal{O}$ fixed.

Set $\mathcal{B}(\mathcal{O}, \rho) := \mathcal{B}(M(\mathcal{O}, \rho))$.
Fact: All irreducible Yetter-Drinfeld modules over \(\mathbb{k}G \) are of the form \(M(\mathcal{O}, \rho) = \text{Ind}^G_{C_G(g)} \rho \), \(\mathcal{O} \) is a conjugacy class of \(G \) and \(\rho \in \text{Irr} C_G(g) \) for \(g \in \mathcal{O} \) fixed.

Set \(\mathcal{B}(\mathcal{O}, \rho) := \mathcal{B}(M(\mathcal{O}, \rho)) \).

Question: Determine all pairs \((\mathcal{O}, \rho) \) with \(\dim \mathcal{B}(\mathcal{O}, \rho) < \infty \).
Fact: All irreducible Yetter-Drinfeld modules over $\mathbb{k}G$ are of the form $M(O, \rho) = \text{Ind}_{C_G(g)}^G \rho$, O is a conjugacy class of G and $\rho \in \text{Irr} C_G(g)$ for $g \in O$ fixed.

Set $\mathcal{B}(O, \rho) := \mathcal{B}(M(O, \rho))$.

Question

Determine all pairs (O, ρ) with $\dim \mathcal{B}(O, \rho) < \infty$.

Crucial: $\mathcal{B}(O, \rho)$ depends only on the underlying braided vector space $(\mathbb{k}O, c^\rho)$.
Fact: All irreducible Yetter-Drinfeld modules over \(kG \) are of the form \(M(\mathcal{O}, \rho) = \text{Ind}_{C_G(g)}^G \rho \), \(\mathcal{O} \) is a conjugacy class of \(G \) and \(\rho \in \text{Irr} C_G(g) \) for \(g \in \mathcal{O} \) fixed.

Set \(\mathcal{B}(\mathcal{O}, \rho) := \mathcal{B}(M(\mathcal{O}, \rho)) \).

Question

Determine all pairs \((\mathcal{O}, \rho) \) with \(\dim \mathcal{B}(\mathcal{O}, \rho) < \infty \).

Crucial: \(\mathcal{B}(\mathcal{O}, \rho) \) depends only on the underlying braided vector space \((k\mathcal{O}, c^\rho) \). i. e., \(\mathcal{B}(\mathcal{O}, \rho) \) depends only on the rack \(\mathcal{O} \) and the non-principal 2-cocycle arising from \(\rho \).
Fact: All irreducible Yetter-Drinfeld modules over $\k G$ are of the form $M(O, \rho) = \text{Ind}_G^C_G(g) \rho$, O is a conjugacy class of G and $\rho \in \text{Irr} C_G(g)$ for $g \in O$ fixed.

Set $\mathcal{B}(O, \rho) := \mathcal{B}(M(O, \rho))$.

Question

Determine all pairs (O, ρ) with $\dim \mathcal{B}(O, \rho) < \infty$.

Crucial: $\mathcal{B}(O, \rho)$ depends only on the underlying braided vector space $(\k O, c^\rho)$. i. e., $\mathcal{B}(O, \rho)$ depends only on the rack O and the non-principal 2-cocycle arising from ρ.

Question [AFGV1]

Determine all pairs (X, q), where X is a finite rack and q is a non-principal 2-cocycle, such that $\dim \mathcal{B}(X, c^q) < \infty$.
Definition

A *rack* is a non-empty set X
Definition

A rack is a non-empty set X endowed with a map $\triangleright : X \times X \to X$ satisfying

(a) $x \triangleright$ is a bijection for any $x \in X$,
(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G, with $x \triangleright y = xyx^{-1}$ for all $x, y \in G$.

We say that a rack is:

- abelian if $x \triangleright y = y$ for all $x, y \in X$.
- decomposable if it contains two subracks R, S such that $X = R \cupdot S$ and $R \triangleright S \subseteq S, S \triangleright R \subseteq R$.
- simple if $|X| > 1$ and any rack epimorphism $X \twoheadrightarrow Y$ is bijective or $|Y| = 1$.
Definition

A *rack* is a non-empty set X endowed with a map $\triangleright : X \times X \to X$ satisfying

(a) $x \triangleright _ \text{ is a bijection for any } x \in X$,

(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G, with $x \triangleright y = xyx^{-1}$ for all $x, y \in G$.

We say that a rack is:

- **abelian** if $x \triangleright y = y$ for all $x, y \in X$.
- **decomposable** if it contains two subracks R, S such that $X = R \sqcup S$ and $R \triangleright S \subseteq S$, $S \triangleright R \subseteq R$.
- **simple** if $|X| > 1$ and any rack epimorphism $X \twoheadrightarrow Y$ is bijective or $|Y| = 1$.

Definition

A **rack** is a non-empty set X endowed with a map $\triangleright : X \times X \to X$ satisfying

(a) $x \triangleright _ \text{ is a bijection for any } x \in X$,

(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

Definition

A rack is a non-empty set X endowed with a map $\triangleright : X \times X \to X$ satisfying

(a) $x \triangleright _ \text{ is a bijection for any } x \in X$,

(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

Definition

A **rack** is a non-empty set X endowed with a map $\triangleright : X \times X \to X$ satisfying

(a) $x \triangleright y$ is a bijection for any $x \in X$,
(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G.

Definition

A rack is a non-empty set X endowed with a map $\rhd : X \times X \rightarrow X$ satisfying

(a) $x \rhd _ \text{ is a bijection for any } x \in X$,
(b) $x \rhd (y \rhd z) = (x \rhd y) \rhd (x \rhd z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G, with $x \rhd y = xyx^{-1}$ for all $x, y \in G$.
Definition

A **rack** is a non-empty set X endowed with a map $\triangleright: X \times X \to X$ satisfying

(a) $x \triangleright _ \text{ is a bijection for any } x \in X$,

(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G, with $x \triangleright y = xyx^{-1}$ for all $x, y \in G$.

We say that a rack is:
Definition

A rack is a non-empty set X endowed with a map $\triangleright : X \times X \to X$ satisfying

(a) $x \triangleright _ \text{ is a bijection for any } x \in X$,
(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G, with $x \triangleright y = x y x^{-1}$ for all $x, y \in G$.

We say that a rack is:

- **abelian** if $x \triangleright y = y$ for all $x, y \in X$.
Definition

A **rack** is a non-empty set X endowed with a map $\triangleright: X \times X \to X$ satisfying

(a) $x \triangleright y$ is a bijection for any $x \in X$,

(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G, with $x \triangleright y = xyx^{-1}$ for all $x, y \in G$.

We say that a rack is:

- **abelian** if $x \triangleright y = y$ for all $x, y \in X$.

- **decomposable** if it contains two subracks R, S such that $X = R \bigsqcup S$ and $R \triangleright S \subseteq S$, $S \triangleright R \subseteq R$.
A **rack** is a non-empty set X endowed with a map $\triangleright : X \times X \to X$ satisfying

(a) $x \triangleright y$ is a bijection for any $x \in X$,
(b) $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

The archetypical example of a rack is a conjugacy class in a group G, with $x \triangleright y = x y x^{-1}$ for all $x, y \in G$.

We say that a rack is:

- **abelian** if $x \triangleright y = y$ for all $x, y \in X$.
- **decomposable** if it contains two subracks R, S such that $X = R \coprod S$ and $R \triangleright S \subseteq S$, $S \triangleright R \subseteq R$.
- **simple** if $|X| > 1$ and any rack epimorphism $X \twoheadrightarrow Y$ is bijective or $|Y| = 1$.
A rack X collapses when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.
Definition

A rack X collapses when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse.
Definition

A rack X **collapses** when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse. We have criteria that help to solve the problem without looking at the 2-cocycle.
Definition

A rack \(X \) \textit{collapses} when \(\dim \mathcal{B}(X, q) = \infty \) for every finite faithful 2-cocycle \(q \).

Therefore, to solve the initial question we first need to determine all conjugacy classes in \(G \) that collapse. We have criteria that help to solve the problem without looking at the 2-cocycle. We say that a rack \(X \) is of
Definition

A rack X \emph{collapses} when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse. We have criteria that help to solve the problem without looking at the 2-cocycle. We say that a rack X is of

- **Type D** if it contains a decomposable subrack $Y = R \sqcup S$ and elements $r \in R$, $s \in S$ such that $r \triangleright (s \triangleright (r \triangleright s)) \neq s$.
Definition

A rack X **collapses** when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse. We have criteria that help to solve the problem without looking at the 2-cocycle. We say that a rack X is of

- **Type D** if it contains a decomposable subrack $Y = R \sqcup S$ and elements $r \in R$, $s \in S$ such that $r \triangleright (s \triangleright (r \triangleright s)) \neq s$.

- **Type F** if it has a family of mutually disjoint subracks $(R_a)_{a \in A}$ such that
Definition

A rack X **collapses** when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse.

We have criteria that help to solve the problem without looking at the 2-cocycle. We say that a rack X is of

- **Type D** if it contains a decomposable subrack $Y = R \coprod S$ and elements $r \in R$, $s \in S$ such that $r \triangleright (s \triangleright (r \triangleright s)) \neq s$.
- **Type F** if it has a family of mutually disjoint subracks $(R_a)_{a \in A}$ such that $R_a \triangleright R_b = R_b$ for all $a, b \in A$.
A rack X collapses when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse. We have criteria that help to solve the problem without looking at the 2-cocycle. We say that a rack X is of

- **Type D** if it contains a decomposable subrack $Y = R \coprod S$ and elements $r \in R$, $s \in S$ such that $r \triangleright (s \triangleright (r \triangleright s)) \neq s$.

- **Type F** if it has a family of mutually disjoint subracks $(R_a)_{a \in A}$ such that $R_a \triangleright R_b = R_b$ for all $a, b \in A$; for all $a \neq b \in A$, there are $r_a \in R_a$, $r_b \in R_b$ such that $r_a \triangleright r_b \neq r_b$.
Definition

A rack X *collapses* when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse. We have criteria that help to solve the problem without looking at the 2-cocycle. We say that a rack X is of

- **Type D** if it contains a decomposable subrack $Y = R \sqcup S$ and elements $r \in R$, $s \in S$ such that $r \triangleright (s \triangleright (r \triangleright s)) \neq s$.

- **Type F** if it has a family of mutually disjoint subracks $(R_a)_{a \in A}$ such that $R_a \triangleright R_b = R_b$ for all $a, b \in A$; for all $a \neq b \in A$, there are $r_a \in R_a$, $r_b \in R_b$ such that $r_a \triangleright r_b \neq r_b$ and A has four elements.
Definition

A rack X collapses when $\dim \mathcal{B}(X, q) = \infty$ for every finite faithful 2-cocycle q.

Therefore, to solve the initial question we first need to determine all conjugacy classes in G that collapse. We have criteria that help to solve the problem without looking at the 2-cocycle. We say that a rack X is of

- **Type D** if it contains a decomposable subrack $Y = R \coprod S$ and elements $r \in R$, $s \in S$ such that $r \rhd (s \rhd (r \rhd s)) \neq s$.

- **Type F** if it has a family of mutually disjoint subracks $(R_a)_{a \in A}$ such that $R_a \rhd R_b = R_b$ for all $a, b \in A$; for all $a \neq b \in A$, there are $r_a \in R_a$, $r_b \in R_b$ such that $r_a \rhd r_b \neq r_b$ and A has four elements.

- **Type C** if it has a decomposable subrack $Y = R \coprod S$, where $|R| > 6$ or $|S| > 6$, with elements $r \in R$, $s \in S$ such that $r \rhd s \neq s$.
Álgebras de Hopf punteadas sobre grupos finitos simples de tipo Lie

Racks

Properties

Remarks:

▶ Si O es una clase de conjugación en un grupo finito G, entonces O es de tipo D si y solo si existen $x, y \in O$ que no se conjugan en $\langle x, y \rangle$ y $(xy)^2 \neq (yx)^2$.

▶ Si Z es un rack finito que admite una morfismo de rack $Z \twoheadrightarrow X$, donde X es de tipo D (F, C), entonces Z es de tipo D (F, C).

▶ Si Z es indecomponible, entonces admite una morfismo de rack $Z \twoheadrightarrow X$ con X simple.

Teorema [AFGV1], [H], [ACG]

Un rack X de tipo C, D o F se colapsa.

▶ Un rack X es cthulhu cuando no es de tipo C, D, F.

▶ Un rack X es sober cuando cada subrack es abeliano o indecomponible. Un rack sober es cthulhu.
Remarks:

- If O is a conjugacy class in a finite group G, then O is of type D if and only if there exist $x, y \in O$ such that x, y are not conjugated in $\langle x, y \rangle$ and $(xy)^2 \neq (yx)^2$.

- If Z is a finite rack that admits a rack epimorphism $Z \twoheadrightarrow X$, where X is of type D (F, C), then Z is of type D (F, C).

- If Z is indecomposable, then it admits a rack epimorphism $Z \twoheadrightarrow X$ with X simple.

Theorem [AFGV1], [H], [ACG]

A rack X of type C, D or F collapses.

- A rack X is cthulhu when it is neither of type C, D, F.

- A rack X is sober if every subrack is either abelian or indecomposable. A sober rack is cthulhu.
Remarks:

▶ If \mathcal{O} is a conjugacy class in a finite group G, then \mathcal{O} is of type D if and only if there exist $x, y \in \mathcal{O}$ such that x, y are not conjugated in $\langle x, y \rangle$ and $(xy)^2 \neq (yx)^2$.

▶ If Z is a finite rack that admits a rack epimorphism $Z \twoheadrightarrow X$, where X is of type D (F, C), then Z is of type D (F, C).

▶ If Z is indecomposable, then it admits a rack epimorphism $Z \twoheadrightarrow X$ with X simple.

Theorem [AFGV1], [H], [ACG]

A rack X of type C, D or F collapses.

▶ A rack X is cthulhu when it is neither of type C, D, F.

▶ A rack X is sober if every subrack is either abelian or indecomposable. A sober rack is cthulhu.
Remarks:

- If \mathcal{O} is a conjugacy class in a finite group G, then \mathcal{O} is of type D if and only if there exist $x, y \in \mathcal{O}$ such that x, y are not conjugated in $\langle x, y \rangle$ and $(xy)^2 \neq (yx)^2$.

- If Z is a finite rack that admits a rack epimorphism $Z \twoheadrightarrow X$, where X is of type D (F, C), then Z is of type D (F, C).
Remarks:

- If \(\mathcal{O} \) is a conjugacy class in a finite group \(G \), then \(\mathcal{O} \) is of type D if and only if there exist \(x, y \in \mathcal{O} \) such that \(x, y \) are not conjugated in \(\langle x, y \rangle \) and \((xy)^2 \neq (yx)^2 \).

- If \(Z \) is a finite rack that admits a rack epimorphism \(Z \twoheadrightarrow X \), where \(X \) is of type D (F, C), then \(Z \) is of type D (F, C).

- If \(Z \) is indecomposable, then it admits a rack epimorphism \(Z \twoheadrightarrow X \) with \(X \) simple.
Remarks:

► If \mathcal{O} is a conjugacy class in a finite group G, then \mathcal{O} is of type D if and only if there exist $x, y \in \mathcal{O}$ such that x, y are not conjugated in $\langle x, y \rangle$ and $(xy)^2 \neq (yx)^2$.

► If Z is a finite rack that admits a rack epimorphism $Z \twoheadrightarrow X$, where X is of type D (F, C), then Z is of type D (F, C).

► If Z is indecomposable, then it admits a rack epimorphism $Z \twoheadrightarrow X$ with X simple.

Theorem [AFGV1], [H], [ACG]

A rack X of type C, D or F collapses.
Remarks:

- If \mathcal{O} is a conjugacy class in a finite group G, then \mathcal{O} is of type D if and only if there exist $x, y \in \mathcal{O}$ such that x, y are not conjugated in $\langle x, y \rangle$ and $(xy)^2 \neq (yx)^2$.

- If Z is a finite rack that admits a rack epimorphism $Z \twoheadrightarrow X$, where X is of type D (F, C), then Z is of type D (F, C).

- If Z is indecomposable, then it admits a rack epimorphism $Z \twoheadrightarrow X$ with X simple.

Theorem [AFGV1], [H], [ACG]

A rack X of type C, D or F collapses.

- A rack X is *cthulhu* when it is neither of type C, D, F.
Remarks:

► If \mathcal{O} is a conjugacy class in a finite group G, then \mathcal{O} is of type D if and only if there exist $x, y \in \mathcal{O}$ such that x, y are not conjugated in $\langle x, y \rangle$ and $(xy)^2 \neq (yx)^2$.

► If Z is a finite rack that admits a rack epimorphism $Z \twoheadrightarrow X$, where X is of type D (F, C), then Z is of type D (F, C).

► If Z is indecomposable, then it admits a rack epimorphism $Z \twoheadrightarrow X$ with X simple.

Theorem [AFGV1], [H], [ACG]

A rack X of type C, D or F collapses.

► A rack X is *cthulhu* when it is neither of type C, D, F.

► A rack X is *sober* if every subrack is either abelian or indecomposable.
Remarks:

- If \mathcal{O} is a conjugacy class in a finite group G, then \mathcal{O} is of type D if and only if there exist $x, y \in \mathcal{O}$ such that x, y are not conjugated in $\langle x, y \rangle$ and $(xy)^2 \neq (yx)^2$.

- If Z is a finite rack that admits a rack epimorphism $Z \twoheadrightarrow X$, where X is of type D (F, C), then Z is of type D (F, C).

- If Z is indecomposable, then it admits a rack epimorphism $Z \twoheadrightarrow X$ with X simple.

Theorem [AFGV1], [H], [ACG]

A rack X of type C, D or F collapses.

- A rack X is *cthulhu* when it is neither of type C, D, F.

- A rack X is *sober* if every subrack is either abelian or indecomposable. A sober rack is cthulhu.
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let p be a prime number,
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let p be a prime number, $m \in \mathbb{N}$,
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let p be a prime number, $m \in \mathbb{N}$, $q = p^m$ and
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let p be a prime number, $m \in \mathbb{N}$, $q = p^m$ and \mathbb{F}_q the field with q elements.
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let \(p \) be a prime number, \(m \in \mathbb{N}, q = p^m \) and \(\mathbb{F}_q \) the field with \(q \) elements.

\(\diamond \) Let \(G \) be a semisimple algebraic group defined over \(\mathbb{F}_q \).
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let p be a prime number, $m \in \mathbb{N}$, $q = p^m$ and \mathbb{F}_q the field with q elements.

Let G be a semisimple algebraic group defined over \mathbb{F}_q. A *Steinberg endomorphism* $F : G \to G$ is an abstract group automorphism having a power equal to a Frobenius map.
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let \(p \) be a prime number, \(m \in \mathbb{N} \), \(q = p^m \) and \(\mathbb{F}_q \) the field with \(q \) elements.

◊ Let \(\mathbb{G} \) be a semisimple algebraic group defined over \(\mathbb{F}_q \). A **Steinberg endomorphism** \(F : \mathbb{G} \rightarrow \mathbb{G} \) is an abstract group automorphism having a power equal to a Frobenius map. The subgroup \(\mathbb{G}^F \) is called a **finite group of Lie type**.
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let p be a prime number, $m \in \mathbb{N}$, $q = p^m$ and \mathbb{F}_q the field with q elements.

- Let G be a semisimple algebraic group defined over \mathbb{F}_q. A **Steinberg endomorphism** $F : G \to G$ is an abstract group automorphism having a power equal to a Frobenius map. The subgroup G^F is called a **finite group of Lie type**.

- Assume G is a simple simply connected algebraic group.
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let \(p \) be a prime number, \(m \in \mathbb{N} \), \(q = p^m \) and \(\mathbb{F}_q \) the field with \(q \) elements.

\(\diamond \) Let \(G \) be a semisimple algebraic group defined over \(\mathbb{F}_q \). A **Steinberg endomorphism** \(F : G \rightarrow G \) is an abstract group automorphism having a power equal to a Frobenius map. The subgroup \(G^F \) is called a *finite group of Lie type*.

\(\diamond \) Assume \(G \) is a simple simply connected algebraic group. Then \(G/Z(G) \) is a simple abstract group but \(G^F \) is not simple in general.
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let \(p \) be a prime number, \(m \in \mathbb{N} \), \(q = p^m \) and \(\mathbb{F}_q \) the field with \(q \) elements.

\[\diamond \text{Let } G \text{ be a semisimple algebraic group defined over } \mathbb{F}_q. \text{ A } \text{Steinberg endomorphism } F : G \rightarrow G \text{ is an abstract group automorphism having a power equal to a Frobenius map. The subgroup } G^F \text{ is called a finite group of Lie type.} \]

\[\diamond \text{Assume } G \text{ is a simple simply connected algebraic group. Then } G/Z(G) \text{ is a simple abstract group but } G^F \text{ is not simple in general. In fact } G := G^F/Z(G^F) \text{ is a simple finite group except for } 8 \text{ examples that appear in low rank and with } q = 2 \text{ or } 3. \]
We consider finite-dimensional pointed Hopf algebras with finite simple group of Lie type, [MaT].

Let p be a prime number, $m \in \mathbb{N}$, $q = p^m$ and \mathbb{F}_q the field with q elements.

diamond Let G be a semisimple algebraic group defined over \mathbb{F}_q. A **Steinberg endomorphism** $F : G \to G$ is an abstract group automorphism having a power equal to a Frobenius map. The subgroup G^F is called a **finite group of Lie type**.

diamond Assume G is a simple simply connected algebraic group. Then $G/Z(G)$ is a simple abstract group but G^F is not simple in general. In fact $G := G^F/Z(G^F)$ is a simple finite group except for 8 examples that appear in low rank and with $q = 2$ or 3. These G are called **finite simple groups of Lie type**.
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups.
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps:

\[
PGL_n(q), \quad n \geq 2 \text{ (except } PGL_2(2) \cong S_3 \text{ and } PGL_2(3) \cong A_4); \]
\[
PSL_n(q), \quad n \geq 2; \]
\[
PSp_{2n}(q), \quad n \geq 2; \]
\[
PSp_{2n+1}(q), \quad n \geq 3, \quad q \text{ odd; } \]
\[
G_2(q), \quad q \geq 3; \]
\[
F_4(q); \]
\[
E_6(q); \]
\[
E_7(q); \]
\[
E_8(q). \]
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps: there exists an F-stable torus T such that $F(t) = t^q$ for all $t \in T$.
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps: there exists an F-stable torus T such that $F(t) = t^q$ for all $t \in T$. Then F is called a Frobenius map and $G^F = G(\mathbb{F}_q)$ is the finite group of \mathbb{F}_q-points:
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps: there exists an F-stable torus T such that $F(t) = t^q$ for all $t \in T$. Then F is called a Frobenius map and $G^F = G(\mathbb{F}_q)$ is the finite group of \mathbb{F}_q-points: $\text{PSL}_n(q)$, $n \geq 2$ (except $\text{PSL}_2(2) \cong S_3$ and $\text{PSL}_2(3) \cong A_4$); $\text{PSp}_{2n}(q)$, $n \geq 2$; $\text{PΩ}_{2n+1}(q)$, $n \geq 3$, q odd; $\text{PΩ}^+_{2n}(q)$, $n \geq 4$; $G_2(q)$, $q \geq 3$; $F_4(q)$; $E_6(q)$; $E_7(q)$; $E_8(q)$.
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps: there exists an F-stable torus T such that $F(t) = t^q$ for all $t \in T$. Then F is called a Frobenius map and $\mathbb{G}^F = \mathbb{G}(\mathbb{F}_q)$ is the finite group of \mathbb{F}_q-points: $\text{PSL}_n(q), \ n \geq 2$ (except $\text{PSL}_2(2) \cong S_3$ and $\text{PSL}_2(3) \cong A_4$); $\text{PSp}_{2n}(q), \ n \geq 2$; $\text{PΩ}_{2n+1}(q), \ n \geq 3, q \text{ odd}$; $\text{PΩ}_{2n}^+(q), \ n \geq 4$; $G_2(q), \ q \geq 3$; $F_4(q)$; $E_6(q)$; $E_7(q)$; $E_8(q)$.

Steinberg groups. Correspond to *twisted* Steinberg maps, i.e. F is the product of a Frobenius map with an automorphism of \mathbb{G} induced by a non-trivial Dynkin diagram automorphism:
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps: there exists an F-stable torus T such that $F(t) = t^q$ for all $t \in T$. Then F is called a Frobenius map and $G^F = G(\mathbb{F}_q)$ is the finite group of \mathbb{F}_q-points: $\text{PSL}_n(q), n \geq 2$ (except $\text{PSL}_2(2) \simeq S_3$ and $\text{PSL}_2(3) \simeq A_4$); $\text{PSp}_{2n}(q), n \geq 2$; $\text{PΩ}_{2n+1}(q), n \geq 3$, q odd; $\text{PΩ}^+_{2n}(q), n \geq 4$; $G_2(q), q \geq 3$; $F_4(q); E_6(q); E_7(q); E_8(q)$.

Steinberg groups. Correspond to twisted Steinberg maps, i. e. F is the product of a Frobenius map with an automorphism of G induced by a non-trivial Dynkin diagram automorphism: $\text{PSU}_n(q), n \geq 3$ (except $\text{PSU}_3(2)$); $\text{PΩ}^-_{2n}(q), n \geq 4$; $^3D_4(q), ^2E_6(q)$.
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps: there exists an F-stable torus T such that $F(t) = t^q$ for all $t \in T$. Then F is called a Frobenius map and $G^F = G(\mathbb{F}_q)$ is the finite group of \mathbb{F}_q-points: $\text{PSL}_n(q)$, $n \geq 2$ (except $\text{PSL}_2(2) \cong \mathbb{S}_3$ and $\text{PSL}_2(3) \cong \text{A}_4$); $\text{PSp}_{2n}(q)$, $n \geq 2$; $\text{PΩ}_{2n+1}(q)$, $n \geq 3$, q odd; $\text{PΩ}_{2n}^+(q)$, $n \geq 4$; $G_2(q)$, $q \geq 3$; $F_4(q)$; $E_6(q)$; $E_7(q)$; $E_8(q)$.

Steinberg groups. Correspond to twisted Steinberg maps, i.e. F is the product of a Frobenius map with an automorphism of G induced by a non-trivial Dynkin diagram automorphism: $\text{PSU}_n(q)$, $n \geq 3$ (except $\text{PSU}_3(2)$); $\text{PΩ}_{2n}^-(q)$, $n \geq 4$; $^3D_4(q)$, $^2E_6(q)$.

Suzuki-Rees groups. Related to very twisted Steinberg maps:
There are three families of finite simple groups of Lie type, according to the classes of Steinberg endomorphisms:

Chevalley groups. Correspond to \mathbb{F}_q-split Steinberg maps: there exists an F-stable torus T such that $F(t) = t^q$ for all $t \in T$. Then F is called a Frobenius map and $G^F = G(\mathbb{F}_q)$ is the finite group of \mathbb{F}_q-points: $\text{PSL}_n(q)$, $n \geq 2$ (except $\text{PSL}_2(2) \cong S_3$ and $\text{PSL}_2(3) \cong \mathbb{A}_4$); $\text{PSp}_{2n}(q)$, $n \geq 2$; $\text{PΩ}_{2n+1}(q)$, $n \geq 3$, q odd; $\text{PΩ}^+_{2n}(q)$, $n \geq 4$; $G_2(q)$, $q \geq 3$; $F_4(q)$; $E_6(q)$; $E_7(q)$; $E_8(q)$.

Steinberg groups. Correspond to twisted Steinberg maps, i.e. F is the product of a Frobenius map with an automorphism of G induced by a non-trivial Dynkin diagram automorphism: $\text{PSU}_n(q)$, $n \geq 3$ (except $\text{PSU}_3(2)$); $\text{PΩ}^-_{2n}(q)$, $n \geq 4$; $^3\text{D}_4(q)$, $^2E_6(q)$.

Suzuki-Rees groups. Related to very twisted Steinberg maps: $^2B_2(2^{2n+1})$, $n \geq 1$; $^2G_2(3^{2n+1})$, $n \geq 1$; $^2F_4(2^{2n+1})$, $n \geq 1$.
Take $x \in G$;
Take $x \in G$; we want to investigate the orbit O^G_x.
Take $x \in G$; we want to investigate the orbit O_x^G.

If $x = x_s x_u$ is the Chevalley-Jordan decomposition in G, then $x_s, x_u \in G$. Let $K = C_G(x_s)$, a reductive subgroup of G, and $K = K \cap G = C_G(x_s)$. Since $x_u \in K$, $O_{K x_u}$ is a subrack of $O_{G x}$ and we can reduce our study to the case when x is either unipotent or semisimple.
Take $x \in G$; we want to investigate the orbit O^G_x.

If $x = x_s x_u$ is the Chevalley-Jordan decomposition in G, then $x_s, x_u \in G$.

Take $x \in G$; we want to investigate the orbit \mathcal{O}_x^G.

If $x = x_s x_u$ is the Chevalley-Jordan decomposition in G, then $x_s, x_u \in G$.

Let $K = C_G(x_s)$, a reductive subgroup of G.
Take $x \in G$; we want to investigate the orbit O^G_x.

If $x = x_s x_u$ is the Chevalley-Jordan decomposition in G, then $x_s, x_u \in G$.

Let $K = C_G(x_s)$, a reductive subgroup of G. Then $K = K \cap G = C_G(x_s)$.
Take $x \in G$; we want to investigate the orbit O^G_x.

If $x = x_s x_u$ is the Chevalley-Jordan decomposition in G, then $x_s, x_u \in G$.

Let $K = C_G(x_s)$, a reductive subgroup of G. Then $K = K \cap G = C_G(x_s)$.

Since $x_u \in K$, $O^K_{x_u}$ is a subrack of O^G_x and we can reduce our study to the case when x is either unipotent or semisimple.
For $a \in (\mathbb{F}_q^n)^{n-1}$, define

$$r_a = \begin{pmatrix}
1 & a_1 & 0 & \ldots & 0 \\
0 & 1 & a_2 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 1 & a_{n-1} \\
0 & \ldots & \ldots & 0 & 1
\end{pmatrix}.$$
For $a \in (\mathbb{F}_q^{\ast})^{n-1}$, define

$$r_a = \begin{pmatrix}
1 & a_1 & 0 & \ldots & 0 \\
0 & 1 & a_2 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
0 & \ldots & 0 & 1 & a_{n-1} \\
0 & \ldots & 0 & 0 & 1
\end{pmatrix}.$$

A unipotent element $u \in \text{GL}_n(q)$ is of type $\lambda = (\lambda_1, \ldots, \lambda_k)$ if it is conjugate to the element

$$u = \begin{pmatrix}
u_1 & 0 & \ldots & 0 \\
0 & u_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & u_k
\end{pmatrix} \quad \text{where} \quad u_i = r_1 \in \mathbb{F}_q^{\lambda_i \times \lambda_i}.$$
We describe some results for $G = \text{SL}_n(q)$.
We describe some results for $G = \text{SL}_n(q)$. We begin with unipotent classes.
We describe some results for $G = \text{SL}_n(q)$.

We begin with unipotent classes. By isogeny arguments, the following theorem will imply the result for $G = \text{PSL}_n(q)$ and it is crucial for the proof for all Chevalley groups.
We describe some results for $G = \text{SL}_n(q)$.

We begin with unipotent classes. By isogeny arguments, the following theorem will imply the result for $G = \text{PSL}_n(q)$ and it is crucial for the proof for all Chevalley groups.

Theorem

Let O be a unipotent conjugacy class in G. If O is not listed below, then it collapses.

<table>
<thead>
<tr>
<th>n</th>
<th>type</th>
<th>q</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(2)</td>
<td>even or not a square</td>
<td>sober</td>
</tr>
<tr>
<td>3</td>
<td>(3)</td>
<td>2</td>
<td>sober</td>
</tr>
<tr>
<td></td>
<td>(2, 1)</td>
<td>2</td>
<td>cthulhu</td>
</tr>
<tr>
<td>4</td>
<td>(2, 1, 1)</td>
<td>2</td>
<td>cthulhu</td>
</tr>
</tbody>
</table>
For non-semisimple and non-unipotent classes in $\text{SL}_n(q)$ we have the following
For non-semisimple and non-unipotent classes in $\text{SL}_n(q)$ we have the following

Proposition

Let $x \in G = \text{SL}_n(q)$ with Chevalley-Jordan decomposition $x = x_s x_u$. Assume that x_s is not central and $x_u \neq e$. Then O^G_x collapses.
For non-semisimple and non-unipotent classes in \(SL_n(q) \) we have the following

Proposition

Let \(x \in G = SL_n(q) \) with Chevalley-Jordan decomposition \(x = x_s x_u \). Assume that \(x_s \) is not central and \(x_u \neq e \). Then \(O^G_x \) collapses.

Nevertheless, for \(G = PSL_n(q) \) we do not have the complete result yet:
For non-semisimple and non-unipotent classes in $\text{SL}_n(q)$ we have the following

Proposition

Let $x \in G = \text{SL}_n(q)$ with Chevalley-Jordan decomposition $x = x_s x_u$. Assume that x_s is not central and $x_u \neq e$. Then O^G_x collapses.

Nevertheless, for $G = \text{PSL}_n(q)$ we do not have the complete result yet:

Proposition

Let $x \in \text{SL}_n(q)$ with Chevalley-Jordan decomposition $x = x_s x_u$. Assume that x_s is not central and $x_u \neq e$. If x_u is not listed below, then $O^G_{x_u}$ collapses. In consequence, if $x = \pi(x) \in G$, then O^G_x collapses.
<table>
<thead>
<tr>
<th>[n = h_1 \Lambda_1 + \cdots + h_\ell \Lambda_\ell]</th>
<th>[x_u = (u_1, \ldots, u_\ell)]</th>
<th>[q = (q^{\mu_1}, \ldots, q^{\mu_\ell})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[n = 2\Lambda_1 > 2, \ \ell = 1]</td>
<td>[x_u = u_1]</td>
<td>all</td>
</tr>
<tr>
<td>[h_1 = 2]</td>
<td>[(u_1, \text{id}, \ldots, \text{id})]</td>
<td>odd and 9 or not a square</td>
</tr>
<tr>
<td>[h_i \geq 2 \text{ for } 2 \leq i \leq \ell]</td>
<td>[u_i = \text{id for } i \neq 1]</td>
<td></td>
</tr>
<tr>
<td>[h_j = 2]</td>
<td>[(u_1, \ldots, u_1, \text{id}, \ldots, \text{id})]</td>
<td>[q = 3]</td>
</tr>
<tr>
<td>[#{j : u_j \neq \text{id}} \geq 2]</td>
<td>[u_i = \text{id for } j < i \leq \ell]</td>
<td></td>
</tr>
<tr>
<td>[h_i \geq 2 \text{ for } j < i \leq \ell]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[h_1 = 2]</td>
<td>[(u_1, \text{id}, \ldots, \text{id})]</td>
<td>[q = 3]</td>
</tr>
<tr>
<td>[h_1 = 3]</td>
<td>[(u_1, \text{id}, \ldots, \text{id})]</td>
<td>[q = 2]</td>
</tr>
<tr>
<td>[h_1 = 4]</td>
<td>[(u_1, \text{id}, \ldots, \text{id})]</td>
<td>[q = 2]</td>
</tr>
<tr>
<td>[u_1 \text{ of type } (2, 1, 1)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[h_j = 2]</td>
<td>[(u_1, \ldots, u_1, \text{id}, \ldots, \text{id})]</td>
<td>[q = 2]</td>
</tr>
<tr>
<td>[#{j : u_j \neq \text{id}} \geq 2]</td>
<td>[u_i = \text{id for } j < i \leq \ell]</td>
<td></td>
</tr>
<tr>
<td>[h_1 = 2,]</td>
<td>[(u_1, \text{id}, \ldots, \text{id})]</td>
<td>[q \text{ even}]</td>
</tr>
</tbody>
</table>
Now we summarize the results (still on progress) on collapsing unipotent classes in a Chevalley group.
Now we summarize the results (still on progress) on collapsing unipotent classes in a Chevalley group. Let G be a Chevalley group, $G \neq \text{PSL}_n(q)$.
Now we summarize the results (still on progress) on collapsing unipotent classes in a Chevalley group. Let G be a Chevalley group, $G \neq \text{PSL}_n(q)$.

Theorem

Let O be a unipotent conjugacy class in G. If O is not listed below, then it collapses.
<table>
<thead>
<tr>
<th>G</th>
<th>q</th>
<th>type or representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{PSp}_{2n}(q)$, $n \geq 2$</td>
<td>even, odd & $\not\equiv \Box$</td>
<td>all, $(1^r_1, 2)$</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>$(1^r_1, 2)$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$(1^r_1, 2^r_2, 3^r_3)$, $r_2 r_3 > 0$</td>
</tr>
<tr>
<td>$\text{P} \Omega_{2n+1}(q)$, $n \geq 3$</td>
<td>3</td>
<td>$(1^r_1, 2^r_2, 3^r_3)$, $r_2 r_3 > 0$</td>
</tr>
<tr>
<td>$\text{P} \Omega_{2n}^+(q)$, $n \geq 4$</td>
<td>even</td>
<td>all, $(1^r_1, 2^r_2, 3^r_3)$, $r_2 r_3 > 0$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$(1^r_1, 2^r_2, 3^r_3)$, $r_2 r_3 > 0$</td>
</tr>
<tr>
<td>$E_6(q)$</td>
<td>2, 4</td>
<td>all except $x_{\alpha_1}(1)$</td>
</tr>
<tr>
<td>$E_7(q)$</td>
<td>2</td>
<td>all except y_{119}</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>all except y_{113}, y_{115}, y_{117}, y_{118}, y_{119}</td>
</tr>
<tr>
<td>$E_8(q)$</td>
<td>2</td>
<td>all except z_{195}</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>all except z_{189}, z_{193}, z_{194}, z_{195}</td>
</tr>
<tr>
<td></td>
<td>$p=2, 3, 5$</td>
<td>$\subset D_8(a_7)$</td>
</tr>
<tr>
<td>$F_4(q)$</td>
<td>2, 3, 4</td>
<td>all except x_4</td>
</tr>
</tbody>
</table>
GRACIAS

S. Freyre, M. Graña and L. Vendramin, *On Nichols algebras over $\text{PGL}(2, q)$ and $\text{PSL}(2, q)$*. J. Algebra Appl. 9 (2010), 195–208.

